Researchers have determined the precise chemical structure of the HIV capsid, a protein shell that protects the virus's genetic material and is a key to its ability to infect and debilitate the human body's defense mechanism. Detailed simulations were achieved with the use of a supercomputer on a 64 million atom sample. The capsid has become an attractive target for the development of new antiretroviral drugs that suppress the HIV virus and stop the progression of AIDS. The research paper describing these results is the cover story of this week's journal Nature (May 30, 2013).
Three different renderings of the HIV capsid, with multiple colors. Image courtesy of the Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, UIUC
Researchers have determined the precise chemical structure of the HIV capsid, a protein shell that protects the virus's genetic material and is a key to its ability to infect and debilitate the human body's defense mechanism. Detailed simulations were achieved with the use of a supercomputer on a 64 million atom sample. The capsid has become an attractive target for the development of new antiretroviral drugs that suppress the HIV virus and stop the progression of AIDS. The research paper describing these results is the cover story of this week's journal Nature (May 30, 2013).
This discovery was enabled by a recently-dedicated, new supercomputer called Blue Waters, one of the world's most powerful computers. Until the arrival of petascale supercomputers, scientists were unable to decipher in atomic-level detail the entire HIV capsid--an assemblage of more than 1,300 identical proteins forming a cone-shaped structure. The simulations that added the missing pieces to the puzzle were conducted during testing of Blue Waters at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (UIUC).
"The sustained petascale performance of Blue Waters is precisely what enabled these talented researchers to explore new methods combined with structural and electron microscopy data to reliably model the chemical structure of the HIV capsid in great detail," says Irene Qualters, NSF program manager for advanced cyberinfrastructure. "This knowledge will allow researchers to infiltrate that membrane with HIV-fighting drugs."
Source: National Science Foundation
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.