Researchers from the UniformedServicesUniversity of the Health Sciences (USU) have discovered that Chlamydia, a bacteria that causes a sexually transmitted disease (STD), shares an evolutionary heritage with plants. That shared evolutionary heritage, which is not found in most other bacteria, points to a prime target for development of an effective cure for Chlamydia infections.
Diaminopimelate, or DAP, is an unusual amino acid that is only synthesized by plants and bacteria. Plants use DAP to make lysine, an essential amino acid, while bacteria use DAP both to make lysine and as a key building block of their cell wall.
In studying the genome sequence of Chlamydia trachomatis for the DAP synthesis pathway, Anthony Maurelli, PhD, professor of microbiology and immunology at USU, along with Andrea McCoy, PhD, a former USU molecular and cell biology graduate student, and Nancy Adams, a scientist in Maurellis laboratory, discovered that Chlamydia appeared to be missing genes for three of the eight enzymes needed to make DAP. They discovered that a single Chlamydia gene, encoding the enzyme L,L-diaminopimelate aminotransferase, filled this pathway hole and provided a new route for synthesizing DAP.
The gene that Maurellis team discovered was similar to a sequence that Thomas Leustek of RutgersUniversity had reported in the mustard plant Arabidopsis earlier this year. Collaboration between the two groups allowed them to show that the Chlamydia enzyme was the same as the plant enzyme and that the pathway used by plants to produce the essential amino acid lysine is probably used by Chlamydia to synthesize DAP for its cell wall.
Chlamydia infections commonly cause urethritis in men, and in women (who are generally asymptomatic with it), if untreated, can lead to pelvic inflammatory disease, ectopic pregnancy and infertility. An estimated 2.8 million men and women each year are infected with Chlamydia making it the most common bacterial sexually transmitted infection in the United States. Chlamydia can be easily treated and cured with antibiotics. However, bacteria often develop resistance to antibiotics, and this discovery offers potential for new drug development. The discovery also suggests that inhibitors of this new enzyme may prove to be effective herbicides as well.
The latest work, which describes the similarities in the enzymes of Chlamydia and plants, was published in the Proceedings of the National Academy of Sciences Online Early Edition this week. In addition to Maurellis team, other authors include Thomas Leustek and Andre Hudson of RutgersUniversity and Charles Gilvarg of PrincetonUniversity.
Established by U.S. Congress in 1972, the UniformedServicesUniversity of the Health Sciences is located on the campus of the NationalNavalMedicalCenter in Bethesda, Md., and is the nations only federal school of medicine and graduate school of nursing.
Source: Uniformed Services University of the Health Sciences (USU)Â Â Â Â
Happy Hand Hygiene Day! Rethinking Glove Use for Safer, Cleaner, and More Ethical Health Care
May 5th 2025Despite their protective role, gloves are often misused in health care settings—undermining hand hygiene, risking patient safety, and worsening environmental impact. Alexandra Peters, PhD, points out that this misuse deserves urgent attention, especially today, World Hand Hygiene Day.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.