Clostridium difficile infection (CDI) continues to be a frequent and potentially severe infection. There is currently no validated clinical tool for use at the time of CDI diagnosis to categorize patients in order to predict response to therapy.
Â
Miller, et al. (2013) describe how six clinical and laboratory variables, measured at the time of CDI diagnosis, were combined in order to assess their correlation with treatment response in a large CDI clinical trial database (derivation cohort). The final categorization scheme was chosen in order to maximize the number of categories (discrimination) while maintaining a high correlation with clinical cure assessed two days after the end of therapy. Validation of the derived scoring scheme was done on a second large CDI clinical trial database (validation cohort). A third comparison was done on the two pooled databases (pooled cohort).
Â
In the derivation cohort, the best discrimination and correlation with cure was seen with a five-component ATLAS score (age, treatment with systemic antibiotics, leukocyte count, albumin and serum creatinine as a measure of renal function), which divided CDI patients into 11 groups (scores of 0 to 10 inclusive) and was highly correlated with treatment outcome (R2=0.95; P<0.001). This scheme showed excellent prediction of cure in the validation cohort (overall Kappa=95.2%; P<0.0001), as well as in the pooled cohort, regardless of treatment (fidaxomicin or vancomycin).
Â
The researchers conclude that a combination of five simple and commonly available clinical and laboratory variables measured at the time of CDI diagnosis, combined into a scoring system (ATLAS), are able to accurately predict treatment response to CDI therapy. The ATLAS scoring system may be useful in stratifying CDI patients so that appropriate therapies can be chosen to maximize cure rates, as well as for categorization of patients in CDI therapeutic studies in order allow comparisons of patient groups. Their research was published in BMC Infectious Diseases.
Reference: Miller MA, Louie T, Mullane K, Weiss K, Lentnek A, Golan Y, Kean Y and Sears P. Derivation and validation of a simple clinical bedside score (ATLAS) for Clostridium difficile infection which predicts response to therapy. BMC Infectious Diseases 2013, 13:148 doi:10.1186/1471-2334-13-148
Â
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.