Closing schools for less than two weeks during an influenza epidemic has no effect on infection rates, according to a study by researchers at the University of Pittsburgh, RTI International and the Allegheny County Health Department.
The study, published online this week in the Journal of Public Health Management and Practice, was developed from a series of computer simulations that characterize influenza transmission in Allegheny County (Pittsburgh) Pennsylvania.
The findings indicate that schools may need to be closed for at least eight weeks in order to significantly reduce the spread of infection.
Closing schools has been considered and used as strategy to stem or slow the current H1N1 influenza pandemic. Indeed, hundreds of schools across the country have been closed at different periods during 2009 to prevent the spread of infection.
"Since children are more susceptible to most influenza strains than adults, closing schools seems an obvious strategy to slow the spread of flu," said study coauthor Philip C. Cooley, assistant director of bioinformatics and a Fellow at RTI. "However, computer simulations indicate that such closures are ineffective unless they are sustained for at least eight weeks after implementation."
Closing schools quickly at the start of an outbreak was much less effective than keeping them closed continually throughout the epidemic, Cooley said.
According to study authors, short-duration school closures may actually increase infection rates by returning susceptible students back to school in the middle of an epidemic when they are most vulnerable to infection.
The study also found that identifying sick students individually and keeping them from attending school had minimal impact on an epidemic. In addition, there were no significant differences between individual school closures and system-wide closures in mitigating an epidemic.
The study was based on a computer simulation model of Allegheny County, Pa., that represented the county's population, school systems, hospitals, workplaces, households and communities.
The model was developed to evaluate three school-focused strategies for dealing with H1N1 outbreaks: isolating sick children individually at home but leaving the school open, closing the entire school system and closing individual schools.
Simulations were based on the movement of residents each weekday from their households to designated workplaces or schools. To account for the lack of real information about individual's movements, RTI's Geospatial Spatial and Technology Group developed complex synthesized populations of 1.2 million people, including 200,000 school-aged children, more than 500,000 households and nearly 300 schools.
The study is part of the Models of Infectious Disease Agent Study (MIDAS) funded by the National Institutes of Health that has separately funded RTI International and the University of Pittsburgh to conduct vanguard modeling of the spread of infectious diseases and advise health officials.
RTI coauthors of the study include William Wheaton and Diane Wagener, PhD, who is RTI's principal investigator on the MIDAS project.
RTI's MIDAS project team is collaborating with researchers across the nation to answer a number of other major research questions concerning the transmission of influenza. Additional studies will be published in the coming months.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.