A PhD student from the University of the Witwatersrand has published a study in the journal Nature Medicine describing how the changing viral swarm in an HIV infected person can drive the generation of antibodies able to neutralize HIV strains from across the world. The study has important implications for the design of a protective HIV vaccine.
Jinal Bhiman, a PhD student in the Faculty of Health Sciences is the lead author of the study, titled, "Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies."
The development of a vaccine remains the best possibility for ending the HIV pandemic. However, the researchers say that a major challenge has been the inability to stimulate broadly neutralizing antibodies that are able to deal with the enormous variability of HIV.
While some infected people are naturally able to make broadly neutralizing antibodies, these antibodies often have unusual features, and generally need to go through an extensive maturation process in order to acquire breadth. Studying these rare people to understand how such antibodies develop provides a roadmap for vaccine strategies.
Through a variety of "high tech" approaches, including the isolation of monoclonal antibodies from single B cells and ultra-deep sequencing of shifting viral populations over more than three years of infection, the researchers studied one woman who developed potent broadly neutralizing antibodies.
The team, led by professors Penny Moore and Lynn Morris, was able to look back in time to identify the unique virus that bound the precursors of what would become broadly neutralizing antibodies, beginning the immune pathway to breadth.
"The study also showed how these early antibodies matured to become broadly neutralizing. As the HIV-swarm struggled to evade these potent early antibodies, it toggled through many mutations in its surface protein. This exposed the maturing antibodies to a diverse range of viruses within this single infected woman," the researchers say.
"Antibodies exposed to this high level of viral diversity in turn mutated to be able to tolerate variation, thus acquiring the ability to neutralize diverse global viruses."
These findings provide insights for the design of vaccines that can "kick-start" and then shape the maturation of broadly neutralizing antibodies in HIV uninfected individuals, to provide protection from HIV exposure.
The study was performed at the National Institute for Communicable Diseases of the National Health Laboratory Service, as part of the Centre for the AIDS Programme of Research in South Africa (CAPRISA) consortium, with long-standing collaborations with the University of Cape Town (UCT), the US National Institutes for Health Vaccine Research Center and Columbia University.
This research was funded by the South African Department of Science and Technology, the SA Medical Research Council Strategic Health Innovations Programme, the US National Institutes of Health and the Wellcome Trust.
Source: University of the Witwatersrand
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.