A PhD student from the University of the Witwatersrand has published a study in the journal Nature Medicine describing how the changing viral swarm in an HIV infected person can drive the generation of antibodies able to neutralize HIV strains from across the world. The study has important implications for the design of a protective HIV vaccine.
Jinal Bhiman, a PhD student in the Faculty of Health Sciences is the lead author of the study, titled, "Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies."
The development of a vaccine remains the best possibility for ending the HIV pandemic. However, the researchers say that a major challenge has been the inability to stimulate broadly neutralizing antibodies that are able to deal with the enormous variability of HIV.
While some infected people are naturally able to make broadly neutralizing antibodies, these antibodies often have unusual features, and generally need to go through an extensive maturation process in order to acquire breadth. Studying these rare people to understand how such antibodies develop provides a roadmap for vaccine strategies.
Through a variety of "high tech" approaches, including the isolation of monoclonal antibodies from single B cells and ultra-deep sequencing of shifting viral populations over more than three years of infection, the researchers studied one woman who developed potent broadly neutralizing antibodies.
The team, led by professors Penny Moore and Lynn Morris, was able to look back in time to identify the unique virus that bound the precursors of what would become broadly neutralizing antibodies, beginning the immune pathway to breadth.
"The study also showed how these early antibodies matured to become broadly neutralizing. As the HIV-swarm struggled to evade these potent early antibodies, it toggled through many mutations in its surface protein. This exposed the maturing antibodies to a diverse range of viruses within this single infected woman," the researchers say.
"Antibodies exposed to this high level of viral diversity in turn mutated to be able to tolerate variation, thus acquiring the ability to neutralize diverse global viruses."
These findings provide insights for the design of vaccines that can "kick-start" and then shape the maturation of broadly neutralizing antibodies in HIV uninfected individuals, to provide protection from HIV exposure.
The study was performed at the National Institute for Communicable Diseases of the National Health Laboratory Service, as part of the Centre for the AIDS Programme of Research in South Africa (CAPRISA) consortium, with long-standing collaborations with the University of Cape Town (UCT), the US National Institutes for Health Vaccine Research Center and Columbia University.
This research was funded by the South African Department of Science and Technology, the SA Medical Research Council Strategic Health Innovations Programme, the US National Institutes of Health and the Wellcome Trust.
Source: University of the Witwatersrand
IDEA in Action: A Strategic Approach to Contamination Control
January 14th 2025Adopting IDEA—identify, define, explain, apply—streamlines contamination control. Infection control professionals can mitigate risks through prevention, intervention, and training, ensuring safer health care environments and reducing frequent contamination challenges.
Balancing Freedom and Safety: When Public Health Mandates Are Necessary
January 9th 2025Public health mandates, such as lockdowns, masking, and vaccination, balance liberty and safety, ensuring critical protections during pandemics like COVID-19 while fostering long-term survival through science.
Long-Term Chronicles: Infection Surveillance Guidance in Long-Term Care Facilities
January 8th 2025Antibiotic stewardship in long-term care facilities relies on McGeer and Loeb criteria to guide infection surveillance and appropriate prescribing, ensuring better outcomes for residents and reducing resistance.
Considering Avian Flu: World Health Organization Expert Warns Against Raw Milk
January 6th 2025Drinking raw milk poses risks of disease transmission, especially with H5N1 outbreaks. Expert Richard J. Webby, PhD, advises against raw cow or goat milk consumption due to its unpredictable and significant risks.