As flu season continues in full-swing, most people can appreciate the need for drugs that stop viruses after they take hold in the body. Despite this serious need for new drugs, a team of researchers from the University of Texas at Austin raise serious concerns about an emerging strategy for stopping viral infections.
According to their research report appearing in the January 2010 issue of the journal Genetics, medications that cause viruses to die off by forcing their nucleic acid to mutate rapidly might actually, in some instances, cause them to emerge from the process stronger, perhaps even more virulent than before drug treatment.
"This work questions whether the practice of 'lethal mutagenesis' of viruses works as predicted," said Jim Bull, PhD, a researcher involved in the study from the Institute for Cellular and Molecular Biology at the University of Texas at Austin. "It remains to be seen whether an elevated mutation rate that does not cause rapid viral extinction enhances treatment or may instead thwart treatment by enhancing viral evolution." Bull's research collaborators included Rachael Springman, Thomas Keller and Ian Molineux from the same institution.
Scientists tested the model of viral evolution at high mutation rates by growing a DNA virus in the presence of a mutagenic agent. The current accepted model predicted that the virus would not be able to handle the high mutation rates and would eventually die off. However, this study proved the model false, as the virus actually increased its fitness at elevated mutation rates. During this study, scientists found molecular evidence that rapid mutations had two effects. The first effect of most mutations, which was expected, was that they killed or weakened the virus. The second effect of some mutations, however, was that they actually helped the virus adapt and thrive. Although the researchers did not question that extremely high mutation will lead to viral extinction on the whole, this discovery raises the specter that forcing viruses to undergo rapid mutations could, if the mutation rate is not high enough, accidentally lead to well-adapted "super viruses."
"This study should raise more than a few eyebrows over this approach to stopping viruses," said Mark Johnston, editor-in-chief of Genetics, "because the last thing anyone wants to do is make a bad situation worse. More work must be done to determine the actual likelihood of this approach yielding a super virus, knowing that it is possible is a big help in preventing what could be a very big problem."
Reference: R. Springman, T. Keller, I. J. Molineux, and J. J. Bull. Evolution at a High Imposed Mutation Rate: Adaptation Obscures the Load in Phage T7. Genetics, Jan 2010; 184: 221-232.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
2 Commerce Drive
Cranbury, NJ 08512