When a patient is prescribed the wrong antibiotic to treat a bacterial infection, it's not necessarily the physician who is at fault. The current antibiotic assay -- standardized in 1961 by the World Health Organization and used worldwide -- is potentially flawed. So says UC Santa Barbara biologist Michael Mahan, whose lab has developed a new antimicrobial susceptibility test that could transform the way antibiotics are developed, tested and prescribed.
Drug testing often excludes potent antibiotics for the treatment of microbial infections (blue plates). Drug testing under conditions that mimic natural infections succeeds in identifying effective antibiotics (red plates), even though these same antibiotics failed standard tests. Courtesy of Peter Allen
When a patient is prescribed the wrong antibiotic to treat a bacterial infection, it's not necessarily the physician who is at fault. The current antibiotic assay -- standardized in 1961 by the World Health Organization and used worldwide -- is potentially flawed. So says UC Santa Barbara biologist Michael Mahan, whose lab has developed a new antimicrobial susceptibility test that could transform the way antibiotics are developed, tested and prescribed.
The standard test specifies how well drugs kill bacteria on petri plates containing Mueller-Hinton Broth, a nutrient-rich laboratory medium that fails to reproduce most aspects of a natural infection. Now, Mahan and colleagues have used a mouse model to demonstrate that a variety of antibiotics work differently against various pathogens when inside the mammalian body. Their findings appear in the journal EBioMedicine.
"The message is simple: Physicians may be relying on the wrong test for identifying antibiotics to treat infections," said Mahan, a professor in UCSB's Department of Molecular, Cellular and Developmental Biology. "By developing a test that mimics conditions in the body, we have identified antibiotics that effectively treat infections caused by diverse bacteria, including MRSA, the cause of deadly Staphylococcal infections. These drugs have been overlooked because they failed the standard tests, despite being inexpensive, nontoxic and available at local pharmacies."
Study authors are Michael Mahan, Lucien Barnes, Geneva Tripp and Douglas Heithoff. Courtesy of Sonia Fernandez
The research has significant implications for public health. If a drug that passed the standard test doesn't work, physicians can now choose a different drug immediately rather than increase the dose of the same drug when patients return -- often in worse condition -- after an ineffective first course of treatment.
Reliance on the standard test may have contributed to the rise in multidrug-resistant bacteria, Mahan noted, due to the continued prescription of ineffective antibiotics. Further, he added, the standard test may also be slowing the discovery of new antibiotics. "These 'wonder drugs' may already exist but have been rejected by the standard test and are consequently not used in practice," Mahan said.
The scientists also report a way to "fix" the standard test to better predict how well antibiotics will treat infections: Simply add sodium bicarbonate. More commonly known as baking soda, this chemical is found in abundance in the body, where it helps to maintain precise blood pH. "Sodium bicarbonate makes the petri plates behave more like the body and increases the test's accuracy for assigning the appropriate antibiotic to treat infections," explained co-lead author Douglas Heithoff, a project scientist at UCSB's Center for Nanomedicine.
Mahan also points out that pharmaceutical companies could benefit from using the revised test to rescreen their collections of purified compounds that have failed the standard test. "There could be a treasure trove of compounds that have been shelved but could actually be quite effective against antibiotic-resistant strains," he said.
"Things aren't as gloomy as we thought," Mahan added. "We just have to be smart about it and change the way we're using the drugs we already have while we continue to search for new ones."
Source: University of California - Santa Barbara
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.