How a retrovirus, like HIV, reproduces and assembles new viruses is different than previously thought, according to Penn State College of Medicine researchers. Understanding the steps a virus takes for assembly could allow development of a way to prevent the spread of retroviral diseases.
The team studied a chicken virus called Rous sarcoma virus that causes cancer in chickens and is similar to HIV.
"The question is, how do retroviruses build new virus particles?" asked Leslie Parent, MD, PhD, professor of infectious diseases, department of medicine. "There are no inhibitors of HIV assembly in clinical use. If we can determine how retroviruses are built, we can help stop the spread of infection through the creation of new drugs."
The start of the replication process is the production by the retrovirus of a protein called Gag. Prior to this study, it was thought the building process happened outside the nucleus in the cyctoplasm -- the material that fills the cell -- and then Gag protein was sent to the plasma membrane -- the outer boundary of the cell. The researchers discovered, however, that Rous sarcoma virus takes a detour through the cell nucleus before going to the cell membrane.
The Gag protein has a signal, which tells a receptor to take it into the nucleus. Once in the nucleus, Gag binds to the viral RNA. The viral RNA alters the structure of the protein, changing the way it folds. This new configuration triggers a different signal that allows the Gag to move out of the nucleus.
"There's a sequence of events that has to happen in a very specific order," Parent explained. "The Gag protein has to find its own RNA, build a virus particle around it, and then release it from the cell." Finding the viral RNA is the first committed step in the assembly process. By focusing on regulatory processes in assembly, researchers are looking for key events that, if disrupted, could stop the virus from spreading.
"We want to understand the smallest building blocks of the virus particle," Parent said. "If we interfere with the first step, the virus will never be released from the cell. Cells are complex, so we use the key elements in a test tube to figure out how Gag and the RNA interact."
This study built on a 2002 paper, which proposed a model for the Gag protein's entry into the nucleus. The researchers reported in the Proceedings of the National Academy of Sciences that Gag does travel in the nucleus. Further study will examine how the Gag complex travels from the nucleus to the plasma membrane.
Working with Parent were Nicole Gudleski, department of microbiology and immunology; John M. Flanagan, PhD, professor, and Marcia C. Bewley, associate professor, department of biochemistry and molecular biology; and Eileen P. Ryan, division of infectious diseases, department of medicine.
A Penn State Hershey Cancer Institute seed grant, the National Institutes of Health, and the Pennsylvania Tobacco Settlement Fund supported this study.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.