Virologists at Emory University School of Medicine, Yerkes National Primate Research Center, and Children's Healthcare of Atlanta have uncovered a critical detail explaining how HIV assembles its infectious yet stealthy clothing.
Probing HIV Env's incorporation into viral particles could inform design of virus-like particle vaccines. Image courtesy of PNAS
Virologists at Emory University School of Medicine, Yerkes National Primate Research Center, and Children's Healthcare of Atlanta have uncovered a critical detail explaining how HIV assembles its infectious yet stealthy clothing.
For HIV to spread from cell to cell, the viral envelope protein needs to become incorporated into viral particles as they emerge from an infected cell. Researchers led by Paul Spearman, MD, have found that a small section of the envelope protein, located on its "tail," is necessary for the protein to be sorted into viral particles.
The results are scheduled for publication in PNAS.
The finding could explain why the HIV envelope protein has an unusually long tail, an element that distinguishes it from similar viruses. The tail is required for HIV to infect and replicate in the cells it prefers: macrophages and T cells. The long tail is also thought to help HIV avoid the immune system, and figuring out how to manipulate it could help researchers design more effective vaccines.
Spearman is Chief Research Officer for Children's Healthcare of Atlanta and Nahmias-Schinazi Professor and Vice Chair of Research in Emory University School of Medicine's Department of Pediatrics. Co-author Eric Hunter, PhD is co-director of Emory's Center for AIDS Research and a Georgia Research Alliance Eminent Scholar.
Working with Spearman, postdoctoral fellow Mingli Qi, PhD, and colleagues previously found that a protein from host cells called Rab11-FIP1C is important for the envelope protein to become part of viral particles in the cells HIV prefers.
"The new paper shows that the protein we found is the key factor in determining envelope incorporation in T cells and macrophages," Spearman says. "Now we know the part of the envelope protein required, which is probably the part that binds to Rab11-FIP1C, and have more evidence that this pathway is really important for the virus."
HIV particles are marked by a relatively sparse level of Env protein, which is thought to help HIV avoid provoking the immune system. It may be possible to either interfere with or enhance HIV envelope incorporation in cells, Spearman says. Enhancing the process could make the vaccines his lab is designing, based on non-infectious virus-like particles, more potent. Conversely, interfering with envelope incorporation could be an antiviral drug target.
Source: Emory Health Sciences
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.