Transmission electron microscope image of Zika virus (red), isolated from a microcephaly case in Brazil. The virus is associated with cellular membranes in the center.
Even as the Zika virus becomes more prevalent -- the Centers for Disease Control reports that the number of U.S. infants born with microcephaly and other birth defects is 20 times over the normal rate -- researchers are still trying to fully pin down the identifying consequences of the viral infection. In a new paper published this week in the American Journal of Medical Genetics, first author Miguel del Campo, MD, PhD, associate professor in the Department of Pediatrics at University of California San Diego School of Medicine, and colleagues in Brazil and Spain, describe the phenotypic spectrum or set of observable characteristics of congenital Zika (ZIKV) syndrome, based upon clinical evaluations and neuroimaging of 83 Brazilian children with presumed or confirmed ZIKV congenital infections.
"These findings provide new insight into the mechanisms and timing of the brain disruption caused by Zika infection, and the sequence of developmental anomalies that may occur," said del Campo, who also serves as a medical geneticist at Rady Children's Hospital-San Diego.
The physical characteristic most associated with Zika infection is microcephaly, a birth defect in which the baby's brain does not develop properly resulting in a smaller than normal head. In this case, prenatal brain development is initially normal, but then disrupted by the viral infection of neural progenitors. The research team reported that evidence of microcephaly and related skull abnormalities was present in 70 percent of the infants studied, though often it was subtle.
"Some cases had milder microcephaly or even a normal head circumference," said del Campo.
Besides the redundant scalp and abnormal cranial shapes resulting from the arrest in brain growth, other physical features consistent with ZIKV infection reflect immobility of the joints, resulting from altered brain function in utero. These included deep and multiple dimples (30.1 percent), distal hand or finger contractures (20.5 percent), feet malpositions (15.7 percent) and generalized athrogryposis involving multiple joints (9.6 percent).
Neurologically, the primary features seen most often and most evidently in infants were alterations in motor activity, reflected in body tone, posture and motility or movement; severe hypertonia (abnormal muscle tension and contraction); abnormal neurobehaviors, such as poor or delayed response to visual stimuli, and excitability. Babies cried excessively but monotonously, and were often inconsolable.
Brain imaging revealed combinations of characteristic abnormalities, such as calcifications, poor gyral patterns and underdevelopment of the brainstem and cerebellum. There was a marked decrease in both gray and white matter volumes.
Del Campo said the findings suggest these children will have severe disabilities, a reality with strong implications for future clinical care. They highlight the variable severity of ZIKV brain damage and other characteristics, depending upon onset of maternal infection. Earlier detection of maternal and prenatal infection, he said, is critical to developing remedies to prevent or ameliorate ZIKV effects.
Source: University of California, San Diego
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.