The Wistar Institute and partners at the Perelman School of Medicine at the University of Pennsylvania, Inovio Pharmaceuticals, and GeneOne Life Science were recognized among the Top 10 Clinical Research Achievement Awards by the Clinical Research Forum for their ground-breaking phase 1 DNA-based Zika vaccine research – the first trial of a Zika vaccine in humans, which proved safe and effective. These study results were published in October in the New England Journal of Medicine.
David B. Weiner, PhD, executive vice president, director of the Vaccine & Immunotherapy Center, and the W.W. Smith Endowed Chair in Cancer Research at the Wistar Institute, and peers received the 2018 Top Ten Clinical Research Achievement Award last night at the National Press Club in Washington, D.C.
Recognizing the need to celebrate our nation’s clinical research accomplishments that involve both innovation and impact on human disease, the Clinical Research Forum conducts this annual competition to determine the top 10 most outstanding research papers written by teams from across the nation. Research by award-recipients exemplifies major advances resulting from the nation’s investment in research to benefit the health and welfare of its citizens.
The Clinical Research Forum board of directors selected winners based on the degree of innovation and novelty involved in the advancement of science; contribution to the understanding of human disease and/or physiology; and potential impact upon the diagnosis, prevention and/or treatment of disease. All awardees were published in peer-reviewed journals last year.
This paper showcased research results from the new DNA-based Zika vaccine that is based on synthetic DNA and gives instructions to the body’s immune system to produce antibodies to attack Zika antigens (i.e. bacteria, viruses, and other foreign substances that trigger immune responses from the body.) In this study, a total of 40 participants received GLS-5700, the new vaccine, against two proteins of the Zika virus. The vaccine induced antibodies in 100 percent of the participants after a three-dose course of therapy and in 95 percent after two doses of vaccine. When blood from vaccinated subjects was then transferred to mice, more than 90 percent of the animals were protected from death and illness despite being exposed to a lethal dose of the Zika virus.
GLS-5700, which was designed and tested in seven months, differs from conventional vaccines, which typically use inactivated or killed versions of a virus and can take years to develop and test. The synthetic vaccine features portions of Zika-virus genes made in a laboratory, which are added to a ring of genetic material called a plasmid. After the vaccine is injected under the skin, electrical impulses are generated, producing small holes in cells, allowing the DNA to enter and initiate the immune response.
Further studies will be needed to evaluate the efficacy of the vaccine and its long-term safety.
Source: Wistar Institute
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.