Helicobacter pylori is a bacterium that establishes a life-long stomach infection in humans, which in some cases can lead to duodenal ulcers or stomach cancer. New research, presented at this week's Society for General Microbiology Autumn Conference, gives us a clearer understanding of how these bacteria can manipulate the human immune system to survive in the mucosal lining of the stomach.
Researchers from the University of Nottingham have shown that H. pylori is able to supress the body's normal production of 'human beta defensin 1' (hÃD1), an antimicrobial factor present in the stomach lining that helps prevent bacterial infection. By collecting stomach tissue biopsies from 54 patients at the Queens Medical Centre, Nottingham, the team showed that patients infected with H. pylori had ten times less hÃD1 than uninfected patients. Those with the lowest amount of hÃD1 had the most bacteria present in their stomach lining.
The most damaging strains of H. pylori make a molecular syringe called the cagT4SS, through which bacterial products are injected into cells of the stomach lining. In vitro work using human gastric epithelial cell lines showed that this activates chemical pathways to suppress hÃD1 production. These activated pathways are also involved in the stimulation of an inflammatory response, meaning that these H. pylori strains are able to survive and colonise more abundantly, while continuing to cause tissue damage over many decades. Previous research suggests that chronic inflammation of the stomach lining is strongly linked to gastric cancer.
It is estimated that half of the world's population have H. pylori in the mucosal lining of their stomach. For most people the infection is asymptomatic, although 1-2 per cent of those infected will develop gastric cancer. Survival rates for this disease remain low, as diagnosis is often very late, when the cancer is at an advanced stage.
Katie Cook, who is presenting this work, says, "To identify people who are likely to suffer from stomach cancer we need to understand how H. pylori interacts with the cells of the stomach lining. Because our research is patient-focused we know that our findings are directly relevant. We hope to combine this work with that being carried out by our colleagues in order to develop a diagnostic test to predict the future risk of gastric cancer development."
Â
Â
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.