Researchers from North Carolina State University have increased the potency of a compound that reactivates antibiotics against methicillin-resistant Staphylococcus aureus (MRSA), an antibiotic-resistant form of Staphylococcus that is notoriously difficult to treat. Their improved compound removes the bacterias antibiotic resistance and allows the antibiotic to once again become effective at normal dosage levels.
NC State chemist Christian Melander had previously proven the effectiveness of a 2-aminoimidazole compound in reactivating antibiotics against resistant bacterial strains. However, the original compound was not potent enough. In his latest work, described in a paper appearing in Angewandte Chemie, Melander, research assistant professor Roberta Worthington and graduate student Tyler Harris have solved the potency issue, bringing them one step closer to in vivo testing.
You measure antibiotic effectiveness by growing bacteria in the presence of an antibiotic, Melander says. The concentration you typically want to observe is about one microgram per milliliter or less of the antibiotic to halt bacterial growth. At that point the bacterial strain is considered susceptible to and treatable by that antibiotic. If a higher concentration of antibiotic is required to halt bacterial growth, the bacterial strain in question is considered untreatable. Some of the MRSA strains we work with require 512 micrograms per milliliter of the antibiotic of choice to control growth 500 times over the limit. Adding our compound brought the level down to one microgram per milliliter again.
The compound works by short-circuiting the bacterias ability to mount a defense against the antibiotic. When antibiotics interact with bacteria, receptors on the surface of the bacteria identify the antibiotic as a threat and the bacteria can then choose what to do to survive. MRSA either creates a biofilm or makes genetic changes that prevent the antibiotic from disrupting its cell structure. According to Melander, We believe that our compound renders the bacteria unable to recognize the antibiotic as a threat, essentially stopping the defensive process before it can begin.
The work was funded by a grant from the U.S. Department of Defense, Defense Medical Research and Development Program.
Â
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.