This is the dengue virus and mosquito. Courtesy of Paul Young and Daniel Watterson
Researchers have new insights into how protective antibodies attack dengue viruses, which could lead to more effective dengue fever vaccines and drug therapies. The University of Queensland and China's ZhuJiang Hospital collaboratively led the study which identified an antibody that binds to, and kills, all four types of dengue virus. The study also revealed the structural basis of the antibody binding to individual dengue viruses.
Dr. Daniel Watterson, joint first author of the paper with Dr. Jie Li, said that the antibody can block entry to the host cell, an essential step in the virus lifecycle.
"As it recognizes all four dengue virus types, it provides the basis of a safe and broad-spectrum anti-dengue therapy as well as informing the next generation of dengue vaccines," he said.
He added that the study shed light on the specific mechanism by which the dengue virus enters cells, and could help explain why some vaccines may not work, while providing a basis for dengue drug design.
"There are four distinct strains of dengue virus, and infection with one does not provide lasting protection against the others."
"In addition, a secondary infection with a different strain is associated with an increased risk of severe disease, suggesting an immune enhancement of the disease."
Head of UQ's School of Chemistry and molecular biosciences professor Paul Young said the work identified an important antibody-binding site on the dengue virus.
"We know from other studies that the dengue virus particle expands its outer shell in response to temperature as a sort of breathing," he said.
"But when we looked at the different stages of breathing that have already been recognized, we found that this antibody-binding site was still hidden.
"So our work indicates that there must be other, more open states of the virus. The findings have identified a new virus control target, a potential Achilles heel."
Professor Young said the spread of four distinct dengue virus types had posed significant hurdles to developing effective vaccines, as any potential vaccine candidate must elicit a strong and protective immune response against all four types.
However some antibody responses had been shown to strengthen the disease. This challenge has hindered dengue vaccine development for more than 60 years.
"This antibody was shown to inhibit but not enhance dengue virus infection and so presents exciting opportunities for control," Young said.
"The emergence of Zika virus has further complicated vaccine design, and emphasizes the need to better understand the molecular mechanisms that underpin protective antibody responses."
Source: University of Queensland
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.