Blue light can selectively eradicate Pseudomonas aeruginosa infections of the skin and soft tissues, while preserving the outermost layer of skin, according to a proof-of-principle study led by Michael R. Hamblin of the Massachusetts General Hospital, and the Harvard Medical School in Boston. The research is published online ahead of print in the journal Antimicrobial Agents and Chemotherapy.
"Blue light is a potential non-toxic, non-antibiotic approach for treating skin and soft tissue infections, especially those caused by antibiotic resistant pathogens," says Hamblin.
In the study, animal models were infected with P. aeruginosa. All of the animals in the group treated with blue light survived, while in the control, 82 percent (9 out of 11) of the animals died.
Skin and soft tissue infections are the second most common bacterial infections encountered in clinical practice, and represent the most common infection presentationmore than 3 percentin patients visiting emergency departments, says Hamblin. The prevalence of skin and soft tissue infections among hospitalized patients is 10 percent, with approximately 14.2 million ambulatory care visits every year and an annual associated medical cost of almost $24 billion (equivalent to $76 for every American), says Hamblin.
Treatment of skin and soft tissue infections has been significantly complicated by the explosion of antibiotic resistance, which may bring an end to what medical scientists refer to as the antibiotic era, says Hamblin. "Microbes replicate very rapidly, and a mutation that helps a microbe survive in the presence of an antibiotic drug will quickly predominate throughout the microbial population. Recently, a dangerous new enzyme, NDM-1, that makes some bacteria resistant to almost all antibiotics available has been found in the United States. Many physicians are concerned that several infections soon may be untreatable."
Besides harming public health, antibiotic resistance boosts health care costs. "Treating resistant skin and soft tissue infections often requires the use of more expensive, or more toxic drugs, and can result in longer hospital stays for infected patients," says Hamblin.
Reference: Dai T, Gupta A, et al.  2013. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antim. Agents Chemother. Published ahead of print Dec. 21, 2012 ,doi:10.1128/AAC.01652-12)
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.