Ben-Gurion University Researchers Discover That AAT Drug May Prevent Infections

Article

Ben Gurion University of the Negev (BGU) researchers have discovered that alpha1-antitrypsin (AAT) could prevent deadly infections in immune system-compromised patients. Their study, reported in the Journal of Infectious Diseases by Dr. Eli C. Lewis and his team of BGU researchers, examined the effectiveness of AAT treatment in halting bacterial colonization and spread. Bacterial infections can rapidly become severe and cause sepsis, multiple organ dysfunction and death, even with available antibiotics.

In the study, mice were directly infected with highly lethal live bacteria, sepsis and peritonitis. The initial aim was to exclude the possibility that AAT, an anti-inflammatory agent, might worsen infections in patients who are being treated with the drug. AAT is currently being used to treat new clinical indications like type 1 diabetes, emphysema and graft versus host disease (a condition that occurs with transplant rejection).

Instead, the BGU research group unexpectedly discovered that the treated mice combatted these lethal infections better than the untreated mice. The bacteria directly introduced were practically eradicated by AAT therapy within 24 hours. According to the researchers, "There were barely enough bacteria left to grow colonies on a plate."

"Imagine if weak patients receive AAT prior to prolonged hospitalization in bacteria-rich hospital facilities," says Lewis, head of the clinical islet laboratory at BGU. "Considering the current frustration with antibiotic development rate compared to bacterial resistance rates, the clinical implications are immense. There is significant demand for the availability of a safe, preemptive, readily accessible approach."

The molecule AAT is naturally produced in the human liver, particularly during inflammatory bouts. It has been known to reduce excessive inflammation and preserve injured tissues.

The BGU team is now working on deciphering the mechanisms behind these favorable outcomes, which will be published in future studies.

Reference: Kaner Z, et al. Acute Phase Protein α1-Antitrypsin Reduces Bacterial Burden in Mice by Selective Modulation of Innate Cell Responses. Journal of Infectious Diseases.

Source: American Associates, Ben-Gurion University of the Negev (AABGU)

Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content