Better Way of Assessing Bacterial Sensitivity to Antibiotics Could Change How Drugs are Prescribed

Article

Mechanical engineers from the Korea Advanced Institute of Science and Technology recently developed a microchip antibiotic testing platform that takes only six to seven hours to determine the appropriate medication.

"Trying to figure what drug to use at what dosage, in the fastest time possible, is key in successfully treating bacterial infections," said Jessie Jeon, an author on the paper.

Clinicians often treat life-threatening infections with a cocktail of antibiotics, hoping that one of the antibiotics will stop the bacterial infection. However, blanket-prescribing antibiotics contributes to the rise in bacterial resistance.

"Figuring out the effect of different combinations of drugs in a simple manner is likely to have a big impact on health," said Jeon. She explained that her team's speedy microfluidic system was the first for which combinatorial treatments had been tested.

The speed and success of the Korean team's new antibiotic susceptibility testing system is due to two key innovative design features.

The first feature was developing an antibiotic dosage range, crucial for calculating the minimum inhibitory dosage that prevents bacterial growth. By continually pumping antibiotics through the half-millimeter-wide channels in the microchip, the team establishes a dosage range through microchip within 30 minutes. A critical time saver, the dosage range enabled the team to determine the minimum inhibitory dosage within a single test.

The second feature was using a convenient method to quantify bacterial growth within the microchip. Images were taken of the agar-encased bacteria and the difference in color between areas of agar at a higher antibiotic concentration, where no bacteria grew (which were dark), and the more reflective white regions, where bacterial colonies grew more easily, was quantified on a position-specific grayscale.

Alignment of the five antibiotics tested in this new system with the clinical gold standard measurements suggests that the microchip system is sensitive enough for clinical application, Jeon added.

"We can see that our assembly works pretty robustly with a single drug, and have also shown it can work with two drugs; now we want to further optimize the application to combinatorial drugs," said Jeon.

The article, "Microfluidic-based observation of local bacterial density under antimicrobial concentration gradient for rapid antibiotic susceptibility testing," is authored by Seunggyu Kim, Seokhun Lee, Ju-Kang Kim, Hyun Jung Chung and Jessie S. Jeon. The article appeared in Biomicrofluidics on Feb. 5, 2019 (DOI: 10.1063/1.5066558).

Source: Korea Advanced Institute of Science and Technology

Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content