Vaccination against seasonal influenza strains is recommended for high-risk patient groups such as infants, elderly and those with respiratory or circulatory diseases. However, efficacy of the trivalent influenza vaccine (TIV) is poor in many cases and in the event of an influenza pandemic, mono-valent vaccines have been rapidly developed and deployed. One of the main issues with use of vaccine in pandemic situations is the lack of a suitable quantity of vaccine early enough during the pandemic to exert a major influence on the transmission of virus and disease outcome. One approach is to use a dose-sparing regimen which inevitably involves enhancing the efficacy using adjuvants.
In this study, Heath, et al. (2017) compared the use of a novel microcrystalline tyrosine (MCT) adjuvant, which is currently used in a niche area of allergy immunotherapy, for its ability to enhance the efficacy of a seasonal TIV preparation. The efficacy of the MCT adjuvant formulation was compared to alum adjuvanted TIV and to TIV administered without adjuvant using a ferret challenge model to determine vaccine efficacy.
The MCT was found to possess high protein-binding capacity. In the two groups where TIV was formulated with adjuvant, the immune response was found to be higher (as determined by HAI titre) than vaccine administered without adjuvant and especially so after challenge with a live influenza virus. Vaccinated animals exhibited lower viral loads (as determined using RT-PCR) than control animals where no vaccine was administered.
The researchers conclude that attributes of each adjuvant in stimulating single-dose protection against a poorly immunogenic vaccine was demonstrated. The properties of MCT that lead to the reported effectiveness warrants further exploration in this and other vaccine targets, particularly where appropriate immunogenic, biodegradable and stable alternative adjuvants are sought.
Reference: Heath MD, et al. Comparison of a novel microcrystalline tyrosine adjuvant with aluminium hydroxide for enhancing vaccination against seasonal influenza. BMC Infectious Diseases. 2017;17:232
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.