Computational Tools Can Facilitate Analysis of Infectious Disease Outbreaks

Article

Computational models play an increasingly important role in the assessment and control of public health crises, as demonstrated during the 2009 H1N1 influenza pandemic. Much research has been done in recent years in the development of sophisticated data-driven models for realistic computer-based simulations of infectious disease spreading. However, only a few computational tools are presently available for assessing scenarios, predicting epidemic evolutions, and managing health emergencies that can benefit a broad audience of users including policy makers and health institutions.

Wouter Van den Broeck, of the Computational Epidemiology Laboratory at the Institute for Scientific Interchange (ISI) in Turin, Italy, and colleagues, report on "GLEaMviz," a publicly available software system that simulates the spread of emerging human-to-human infectious diseases across the world. The researchers explain that the GLEaMviz tool is comprised of three components: the client application, the proxy middleware, and the simulation engine. The latter two components constitute the GLEaMviz server. The simulation engine leverages on the Global Epidemic and Mobility (GLEaM) framework, a stochastic computational scheme that integrates worldwide high-resolution demographic and mobility data to simulate disease spread on the global scale. The GLEaMviz design aims at maximizing flexibility in defining the disease compartmental model and configuring the simulation scenario; it allows the user to set a variety of parameters including: compartment-specific features, transition values, and environmental effects. The output is a dynamic map and a corresponding set of charts that quantitatively describe the geo-temporal evolution of the disease. The software is designed as a client-server system. The multi-platform client, which can be installed on the user's local machine, is used to set up simulations that will be executed on the server, thus avoiding specific requirements for large computational capabilities on the user side.

The researchers say that user-friendly graphical interface of the GLEaMviz tool, along with its high level of detail and the realism of its embedded modeling approach, opens up the platform to simulate realistic epidemic scenarios. These features make the GLEaMviz computational tool a convenient teaching/training tool as well as a first step toward the development of a computational tool aimed at facilitating the use and exploitation of computational models for the policy-making and scenario analysis of infectious disease outbreaks. Their research was published in BMC Infectious Diseases.

Reference: Van den Broeck W, Gioannini C, Goncalves B, Quaggiotto M, Colizza V and Vespignani A. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases 2011, 11:37doi:10.1186/1471-2334-11-37

Related Videos
NFID Medical Director, Robert H. Hopkins, Jr., MD  (Photo courtesy by Evoke Kyne)
Shelley Summerlin-Long, MPH, MSW, BSN, RN, senior quality improvement leader, infection prevention, UNC Medical Center, Chapel Hill, North Carolina
Infection Control Today Infection Intel: Staying Ahead with Company updates and product Innovations.
An eye instrument holding an intraocular lens for cataract surgery. How to clean and sterilize it appropriately?   (Adobe Stock 417326809By Mohammed)
Christopher Reid, PhD  (Photo courtesy of Christopher Reid, PhD)
Paper with words antimicrobial resistance (AMR) and glasses.   (Adobe Stock 126570978 by Vitalii Vodolazskyi)
3D illustration: Candida auris   (Adobe Stock 635576411 By Niamh )
 MIS-C (Adobe Stock 350657530 by Bernard Chantal)
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Related Content