The immune system protects from infections by detecting and eliminating invading pathogens. These two strategies form the basis of conventional clinical approaches in the fight against infectious diseases. In the latest issue of the journal Science, Miguel Soares from the Instituto Gulbenkian de Ciência (Portugal) together with Ruslan Medzhitov from Yale University School of Medicine and David Schneider from Stanford University propose that a third strategy needs to be considered: tolerance to infection, whereby the infected host protects itself from infection by reducing tissue damage and other negative effects caused by the pathogen or the immune response against the invader. The authors argue that identifying the mechanisms underlying this largely overlooked phenomenon may pave the way to new strategies to treat many human infectious diseases.
Upon invasion by pathogens (bacteria, viruses or parasites), the immune system kicks into action, by detecting, destroying and ultimately eliminating the pathogen. This so-called "resistance to infection" is crucial in protecting the host from infection, but is often accompanied by collateral damage to some of the host's vital tissues (liver, kidney, heart, brain). If uncontrolled tissue damage may have lethal consequences, as often happens, for example, in severe malaria, severe sepsis and possibly other infectious diseases. Tolerance reduces the harmful impact of infection and of the ensuing immune response on the host.
Although a well-studied phenomenon in plant immunity, tolerance to infection has been largely overlooked in mammals, including humans. While there is still much to be learnt about how and under which circumstances tolerance to infection is employed by the host, most of what is currently known about the molecular mechanisms underlying this host defense strategy comes from work carried out at the Instituto Gulbenkian de Ciência by the group led by Miguel Soares. The team is particularly interested in identifying disease-specific tolerance mechanisms, on the one hand, and also general strategies of tolerance, that may, possibly, be employed protectively, to precondition the host to future infections.
Because resistance is, generally, the only mechanism considered in animal and human studies, when the host capitulates to infection it is often attributed to failure of the immune system. The authors argue that this is not always the case, and underscore the importance of distinguishing between failed resistance and failed tolerance as the cause for morbidity and mortality by infectious diseases. This distinction will dictate the choice of therapeutic approaches. When the primary problem is failed tolerance, then boosting the immune system, or administering antibiotics, may be ineffective. In this case, enhancing tolerance would possibly be much more effective in fighting infectious, inflammatory and auto-immune diseases.
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.