In search of new strategies against life-threatening tuberculosis infections, a team from the Technical University of Munich (TUM), as well as Harvard University and Texas A&M University have found a new ally. They discovered a substance that interferes with the mycomembrane formation of the bacterium. It is effective even in low concentrations and when combined with known antibiotics their effectiveness is improved by up to 100-fold.
Among the greatest challenges when treating life-threatening tuberculosis infections is the increasing resistance to antibiotics. But the pathogen itself also makes the life of doctors difficult: its dense mycomembrane hampers the effect of many medications. A team of scientists headed by Stephan A. Sieber, professor of organic chemistry at TU Munich, has discovered a substance that perturbs the formation of this membrane significantly.
The mycomembrane of the tuberculosis pathogen Mycobacterium tuberculosis consists of a lipid double layer that encapsulates the cell wall, forming an exterior barrier. Structural hallmarks are mycolic acids, branched beta-hydroxy fatty acids with two long hydrocarbon chains.
The team hypothesizes that similarly structured beta lactones could "mask" themselves as mycolic acid to enter the mycolic acid metabolic pathways and then block the decisive enzymes.
In the context of an extensive search, the interdisciplinary team of scientists hit the bullseye with the beta lactone EZ120. It does indeed inhibit the biosynthesis of the mycomembrane and kills mycobacteria effectively.
Using enzyme assays and mass spectroscopy investigations, Dr. Johannes Lehmann, a researcher at the Chair of Organic Chemistry II at TU Munich, demonstrated during his doctoral work that the new inhibitor blocks especially the enzymes Pks13 and Ag85, which play a key role in the development of mycomembranes.
EZ120 is effective even in low doses, easily passes the mycomembrane and exhibits only low toxicity to human cells. The combined application of this substance with known antibiotics showed a synergistic effect leading to significantly increased effectiveness. "Vancomycin, a common antibiotic, and EZ120 work together very well," says Sieber. "When used together, the dose can be reduced over 100-fold. The scientists suspect that disrupting the mycomembrane enables antibiotics to enter the bacteria more easily. This is a new mode of action and might be a starting point for novel tuberculosis therapies."
The research was funded by the German Research Foundation (SFB 749 and Cluster of Excellence "Center for Integrated Protein Science"), the National Institutes of Health and the German National Academic Foundation (Studienstiftung des Deutschen Volkes). Researchers from the Harvard T.H. Chan School of Public Health and Texas A & M University (College Station) also participated in the research.
Reference: An Antibacterial -Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid BiosynthesisJohannes Lehmann, Tan-Yun Cheng, Anup Aggarwal, Annie S. Park, Evelyn Zeiler, Ravikiran M. Raju, Tatos Akopian, Olga Kandror, James C. Sacchettini, D. Branch Moody, Eric J. Rubin und Stephan A. SieberAngew Chem Int Ed Engl. 2017 Oct 24. doi: 10.1002/anie.201709365
Contact: Technical University of Munich
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.