Working in the emerging field of systems biology, UT Southwestern Medical Center researchers mathematically predicted how bacteria that cause food poisoning hijack a cell's sense of direction and then confirmed those predictions in living cells.
From left: Dr. Neal Alto, assistant professor of microbiology and senior author of the study, and Robert Orchard, graduate student of microbiology and the study's lead author.
Working in the emerging field of systems biology, UT Southwestern Medical Center researchers mathematically predicted how bacteria that cause food poisoning hijack a cell's sense of direction and then confirmed those predictions in living cells.
The study proposed a new model to explain how mammalian cells establish the sense of direction necessary to move, as well as the mechanism that a disease-causing form of E. coli bacteria employ to hijack that ability. Cells need to orient themselves for several basic processes, such as keeping biochemical reactions separated in space and, in the case of immune cells, pursuing pathogens. Importantly, disruption of the cell's sense of direction often leads to human disease.
"This is a great example of scientists from different fields of research coming together to solve a complex and important biological problem," says Dr. Neal Alto, assistant professor of microbiology and senior author of the study, published Feb. 17 in Cell.
Systems biology aims to discover and understand a "circuit theory" for biology a set of powerful and predictive principles that will reveal how networks of biological components are wired to display the complex properties of living things. The rapidly emerging field requires experts in several scientific disciplines including biology, physics, mathematics and computer science to come together to create models of biological systems that consider both the individual parts and how these parts react to each other and to changes in their environment.
Scientists from UT Southwestern's microbiology department and the newly expanded Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology teamed up to examine the problem collaboratively. They initially conceived a mathematical model for their hypothesis of how the cell would respond during an E. coli-induced infection and then tested their computational predictions in living cells.
"Bacteria inject protein molecules into human cells with a needle-and-syringe action," Alto says. "The human cell responds by producing a local actin-rich membrane protrusion at the spot where the bacteria attaches to the cell."
For healthy cells to move normally, these actin polymers push against a cell's membrane, protruding and propelling the cell in one direction or another. When E. coli molecules are injected, however, actin polymers rush to the site infection and help bacterial molecules both move within the cell and establish an internal site of infection.
Robert Orchard, graduate student of microbiology and the study's lead author, notes, "By asking 'How does a bacterial pathogen from outside the cell regulate the host cells' actin dynamics within the cell?' we have uncovered a fundamentally new molecular circuit involved in mammalian cell polarity and bacterial infection. These findings provide new insight into the regulatory mechanisms that control both disease-causing agents and normal mammalian cell behavior."
Other UT Southwestern researchers from the Green Center involved in the work were Dr. Steven Altschuler and Dr. Lani Wu, both associate professors of pharmacology; Dr. Gürol Süel, assistant professor of pharmacology; and Mark Kittisopikul, a student in the Medical Scientist Training Program.
The National Institutes of Health, the James S. McDonnell Foundation and The Welch Foundation supported the study. The researchers also received assistance from the UT Southwestern Live Cell Imaging Facility, which is supported in part by the National Cancer Institute.
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.