Exposure to light and possibly photosynthesis itself could be helping disease-causing bacteria to be internalized by lettuce leaves, making them impervious to washing, according to research published in the October issue of the journal Applied and Environmental Microbiology.
Salmonella enterica is a common cause of foodborne gastroenteritis, with an estimated number of 1 to 3 million human cases per year in the United States. Fresh produce is increasingly being implicated as a source of infection. One of the largest foodborne outbreaks in recent history, the Salmonella St. Paul outbreak in 2008 which sickened more than 1,400 people, was associated with tomatoes and jalapeno peppers.
Previous studies of foodborne pathogens on produce have found that the bacteria do not only attach to the surface of fresh produce but find their way below the surface of the skin through pores called stomata where they can hide from and resist washing and food sanitizers.
In the study, researchers from the Agricultural Research Organization at the Volcani Center in Israel and Tel-Aviv University examined the role that light and photosynthesis might play on the ability of salmonella bacteria to infiltrate lettuce leaves via stomata. Sterile iceberg lettuce leaves were exposed to bacteria either in the light, in the dark, or in the dark after 30 minutes of exposure to light. Incubation in the light or preexposure to light resulted in aggregation of bacteria around open stomata and invasion into the inner leaf tissue. In contrast, incubation in the dark resulted in a scattered attachment pattern and very little internalization.
The researchers believe that the increased propensity for internalization in the light may be due to several factors. First, in the absence of light plants enter a period of dormancy, where stomata are closed and no photosynthesis takes place. In the light, the stomata are open. Additional findings also suggest that the bacteria are attracted to the open stomata by the nutrients produced during photosynthesis which are not present in the dark.
"The elucidation of the mechanism by which Salmonella invades intact leaves has important implications for both pre- and postharvest handling of lettuce and probably other leafy vegetables. The capacity to inhibit internalization should limit bacterial colonization to the phylloplane and consequently might enhance the effectiveness of surface sanitizers," say the researchers.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.