Limiting Work Processes Involving Sinks Results in Decreased Pseudomonas aeruginosa Rates


Salm, et al. (2016) report on an outbreak in a surgical, interdisciplinary intensive care unit (ICU) of a tertiary-care hospital. The researchers detected a cluster of ICU patients colonized or infected with multidrug-resistant Pseudomonas aeruginosa. They established an outbreak investigation team, performed an exploratory epidemiological analysis and initiated an epidemiology-based intervention.

As part of the outbreak investigation, the researchers performed microbiological examinations of the sinks in the patient rooms and a retrospective case-control study. All patients admitted to the outbreak ICU between January 2012 and February 2014 were included. Cases were patients colonized with the outbreak strain. Controls were patients with a different Pseudomonas aeruginosa strain. Risk factors were evaluated using multivariable conditional logistic regression analysis. Strain typing was performed using the repetitive element-based polymerase chain reaction (rep-PCR) DiversiLab system.

The outbreak strain was found in the sinks of five (of 16) patient rooms. Altogether 21 cases and 21 (randomly selected) controls were included. In the univariate analysis, there was no significant difference in baseline data of the patients. In the multivariate analysis, stay in a room with a colonized sink (Odds Ratio[OR] 11.2, p = 0.007) and hemofiltration (OR 21.9, p = 0.020) were independently associated with an elevated risk for colonization or infection by the outbreak strain. In a subsequent evaluation of the work procedures associated with hemofiltration, we found that the ultra-filtrate bags had been on average five times per day emptied in the sinks of the patient rooms and were used multiple for the same patient. The investigators exchanged the traps of the contaminated sinks and eliminated work procedures involving sinks in patient rooms by implementation of single use bags, which are emptied outside patient rooms to reduce splash water at the sinks. In the 20-month follow-up period, the outbreak strain was detected only once, which indicated that the outbreak had been ceased (incidence 0.75% vs. 0.04%, p < 0.001) Furthermore, the incidence of Pseudonomas aeruginosa overall was significantly decreased (2.5% vs. 1.5%, p < 0.001).

In ICUs, limiting work processes involving sinks results in reduced multidrug-resistant Pseudomonas aeruginosa rates. ICUs with high rates of Pseudomonas aeruginosa should consider eliminating work processes that involve sinks and potentially splash water in close proximity to patients.

Reference: Salm F, et al. Prolonged outbreak of clonal MDR Pseudomonas aeruginosa on an intensive care unit: contaminated sinks and contamination of ultra-filtrate bags as possible route of transmission? Antimicrobial Resistance & Infection Control. 2016;5:53

Related Videos
Andrea Flinchum, 2024 president of the Certification Board of Infection Control and Epidemiology, Inc (CBIC) explains the AL-CIP Certification at APIC24
Association for Professionals in Infection Control and Epidemiology  (Image credit: APIC)
Lila Price, CRCST, CER, CHL, the interim manager for HealthTrust Workforce Solutions; and Dannie O. Smith III, BSc, CSPDT, CRCST, CHL, CIS, CER, founder of Surgicaltrey, LLC, and a central processing educator for Valley Health System
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Related Content