The majority of patients with cystic fibrosis may not achieve blood concentrations of antibiotics sufficiently high enough to effectively fight bacteria responsible for pulmonary exacerbations, leading to worsening pulmonary function, indicates a study led by researchers at Children's National Health System. Additionally, the study findings show that it's impossible to predict solely from dosing regimens which patients will achieve therapeutically meaningful antibiotic concentrations in their blood.
The findings, published online in the Journal of Pediatric Pharmacology and Therapeutics, suggest that closely monitoring blood antibiotic concentrations could prove key to improving clinical outcomes.
Cystic fibrosis, a genetic condition that affects about 70,000 people worldwide, is characterized by a buildup of thick, sticky mucus in patients' lungs. There, the mucus traps bacteria, causing patients to develop frequent lung infections that progressively damage these vital organs and impair patients' ability to breathe.
These infections, which cause a host of symptoms collectively known as pulmonary exacerbations, are typically treated with a combination of at least two antibiotics with unique mechanisms. One of these drugs is typically a Beta-lactam antibiotic, a member of a family of antibiotics that includes penicillin derivatives, cephalosporins, monobactams and carbapenems.
Although all antibiotics have a minimum concentration threshold necessary to treat infections, Beta-lactam antibiotics are time-dependent in their bactericidal activity. Their concentrations must exceed a minimum inhibitory concentration for a certain period. However, explains study lead author Andrea Hahn, MD, MS, an infectious disease specialist at Children's National, blood concentrations of Beta-lactam antibiotics aren't typically tracked while patients receive them.
Since antibiotic dosing often doesn't correlate with cystic fibrosis patients' clinical outcomes, Hahn and colleagues examined whether patients actually achieved serum antibiotic concentrations that are therapeutically effective.
The researchers collected data from 19 patients seen at Children's Cystic Fibrosis Center. For each patient, the researchers collected respiratory secretions on four different occasions:
When they were at the clinic for a well-visit
At the beginning of an acute pulmonary exacerbation that required intravenous antibiotic therapy
After treating that acute pulmonary exacerbation and
More than 30 days after the patient completed the treatment course.
The researchers also checked plasma drug concentrations of Beta-lactam antibiotics during each patient's treatment course. They collected samples at a minimum of four time points:
A trough of fewer than 30 minutes before a dose
A peak one hour after a dose was infused
A sample three to four hours after the dose was infused and
A repeat trough fewer than 30 minutes before another dose.
In addition, all the patients underwent pulmonary function tests at the start of their exacerbations and about once weekly until their antibiotic therapy ended.
Using these data points, the researchers constructed a model to determine which patients had achieved therapeutic concentrations for the bacteria found in their respiratory secretions. They then correlated these findings with the results of patients' pulmonary function tests. Just 47 percent of patients had achieved therapeutic concentrations. Those who achieved significantly high antibiotic exposure had more improvement on their pulmonary function tests compared with patients who didn't.
Paradoxically, they discovered that although each patient received recommended antibiotic doses, some patients had adequately high serum antibiotic concentrations while others did not.
Hahn notes that real-time monitoring of antibiotic blood concentrations could help doctors stay on top of whether patients are being adequately dosed. The research team is investigating this in a new study.
Another way to ensure patients receive therapeutically meaningful levels of antibiotics is to develop new models that incorporate variables such as age, gender and creatinine clearance--a measure of kidney function that can be a valuable predictor of metabolism--to predict drug pharmacokinetics. Using findings from this research, Hahn adds, Children's National already has implemented an algorithm using different variables to determine antibiotic dosing for patients treated at the hospital.
"Getting adequate treatment is crucial for getting better," she says. "At Children's National, we are implementing policies to make sure that happens for our patients with cystic fibrosis, infusing new research insights into patients' ongoing clinical care."
Source: Children's National Health System
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.