Multiple Mutations Often Needed to Make TB Bacteria Drug-Resistant

Article

Tuberculosis (TB) drug resistance is not an all-or-none phenomenon, according to new research from Rutgers, The State University of New Jersey. Rather, TB-causing bacteria often accumulate mutations in a step-wise fashion, with the initial mutation having minimal impact but poising the bug to later develop high-level resistance upon acquisition of other mutations. The study appears in Nature Genetics.

The anti-TB drug ethambutol blocks bacterial genes required for synthesis of the bugs protective cell wall. Several mutations in these bacterial genes (collectively called the embCAB operon) have been identified in drug-resistant strains of TB, and single mutations are widely thought to confer resistance in one fell swoop. But not all bugs carrying embCAB mutations become ethambutol-resistant and not all resistance strains contain these mutations, suggesting that the story is much more complicated.

David Alland, director of the Center for Emerging and Re-Emerging Pathogens at Rutgers New Jersey Medical School, and colleagues had previously shown expressing single embCAB mutations in drug sensitive bugs rendered them only slightly more drug resistant than normal and failed to explain full-blown resistance. The group now identifies new mutations that contribute to drug resistance, with the level of resistance depending on the unique combination of mutations in a given bacterial isolate.

One of the newly identified mutationsin a bacterial gene called Rv3806cramps up production of a substrate used by the embCAB-encoded enzymes to generate the bugs cell wall. This excess substrate then binds to the enzymes, potentially limiting the amount of drug that can bind. However, the Rv3806c mutation alone only modestly increased drug resistance. But when combined with other mutations, it generated high-level ethambutol resistance. Surprisingly, they also discovered synonymous DNA mutations (ones that dont change the amino acid sequence of the resulting protein) in a related protein called Rv3792 that also contributed to drug resistance.

Allands group suggests that bugs with single mutations, for example those in Rv3806c and Rv3792, represent a pre-resistant state, in which the bug is poised for full-blown drug resistance upon the acquisition of a second hit mutation. Identification of patients infected with pre-resistant bugs may allow doctors to increase drug dosages or alter treatment strategies before full-scale drug resistance develops.

This work was supported in part by National Institute of Allergy and Infectious Diseases, National Institutes of Health grants AI080653, AI065663 and AI037139 and by Pathogen Functional Genomics Resource Center contract N01-AI5447.

Source: Rutgers

Related Videos
Jill Holdsworth, MS, CIC, FAPIC, CRCST, NREMT, CHL
Jill Holdsworth, MS, CIC, FAPIC, CRCSR, NREMT, CHL, and Katie Belski, BSHCA, CRCST, CHL, CIS
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Related Content