A new compound that visualizes and kills antibiotic resistant superbugs has been discovered by scientists at the University of Sheffield and Rutherford Appleton Laboratory (RAL). The team, led by professor Jim Thomas, from the University of Sheffield's Department of Chemistry, is testing new compounds developed by his PhD student Kirsty Smitten on antibiotic resistant Gram-negative bacteria, including pathogenic E. coli.
Gram-negative bacteria strains can cause infections including pneumonia, urinary tract infections and bloodstream infections. They are difficult to treat as the cell wall of the bacteria prevents drugs from getting into the microbe.
Antimicrobial resistance is already responsible for 25,000 deaths in the EU each year, and unless this rapidly emerging threat is addressed, it's estimated by 2050 more than 10 million people could die every year due to antibiotic resistant infections. Doctors have not had a new treatment for Gram-negative bacteria in the last 50 years, and no potential drugs have entered clinical trials since 2010.
The new drug compound has a range of exciting opportunities. As Thomas explains, "As the compound is luminescent it glows when exposed to light. This means the uptake and effect on bacteria can be followed by the advanced microscope techniques available at RAL. This breakthrough could lead to vital new treatments to life-threatening superbugs and the growing risk posed by antimicrobial resistance."
The studies at Sheffield and RAL have shown the compound seems to have several modes of action, making it more difficult for resistance to emerge in the bacteria. The next step of the research will be to test it against other multi-resistant bacteria.
In a recent report on antimicrobial resistant pathogens, the World Health Organisation put several Gram-negative bacteria at the top of its list, stating that new treatments for these bacteria were 'Priority 1 Critical' because they cause infections with high death rates, are rapidly becoming resistant to all present treatments and are often picked up in hospitals.
The research, published in the journal ACS Nano, describes the new compound which kills Gram-negative E. coli, including a multidrug resistant pathogen said to be responsible for millions of antibiotic resistant infections worldwide annually.
Source: University of Sheffield
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.