Humans are considered the hosts for spreading epidemics. The speed at which an epidemic spreads is now better understood thanks to a new model accounting for the provincial nature of human mobility, according to a study published in EPJ B. The research was conducted by a team lead by Vitaly Belik from the Massachusetts Institute of Technology, who is also affiliated with the Max Planck Institute for Dynamics and Self-Organization in Germany.
The authors modelled human mobility as recurrent trips centered around a home base. The model accounted for the bi-directional travels around a central node, representing their home location and forming a star-shaped network. Previous models were based on diffusion and would imply that people travel randomly in space, not necessarily returning to their home location. These do not accurately describe the high degree of predictability in human mobility.
The researchers found that older diffusion-based models overestimated the speed at which epidemics spread. The speed of epidemics spreading through bi-directional travel, which is dependent on the travel rate, is significantly lower than the speed of epidemics spreading by diffusion.
In addition, the authors discovered that the time individuals spend outside their home locations influences the speed of epidemics spreading and whether an outbreak goes global. This contrasts with previous findings based on diffusion models, which suggested that the rate of travel between locations is the key factor influencing the global outbreak of epidemics.
This model must be tested against real data on human mobility before it can be used as a risk analysis and decision-making tool for epidemics such as avian flu. This model could also be used in areas such as population dynamics and evolutionary biology.
Reference: Belik V., Geisel T., Brockmann D. (2011). Recurrent hostmobility in spatial epidemics: beyond reaction-diffusion, European Physical Journal B (EPJ B) 84, 579587 DOI: 10.1140/epjb/e2011-20485-2.
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.