Successful results of a University of Liverpool-led trial that utilized nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice and progress.
The healthy volunteer trial, conducted by the collaborative nanomedicine research program led by pharmacologist Andrew Owen and materials chemist Steve Rannard, and in collaboration with the St Stephen's AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimization.
Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.
Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.
Recent evaluation of HIV patient groups have shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.
The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70% of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.
The trial is connected to the University's ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC)
Benny Kottiri, USAID's Office of HIV/AIDS Research Division Chief, said: "The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest."
Source: University of Liverpool
Understanding NHSN's 2022 Rebaseline Data: Key Updates and Implications for HAI Reporting
December 13th 2024Discover how the NHSN 2022 Rebaseline initiative updates health care-associated infection metrics to align with modern health care trends, enabling improved infection prevention strategies and patient safety outcomes.
Tackling Health Care-Associated Infections: SHEA’s Bold 10-Year Research Plan to Save Lives
December 12th 2024Discover SHEA's visionary 10-year plan to reduce HAIs by advancing infection prevention strategies, understanding transmission, and improving diagnostic practices for better patient outcomes.
Environmental Hygiene: Air Pressure and Ventilation: Negative vs Positive Pressure
December 10th 2024Learn more about how effective air pressure regulation in health care facilities is crucial for controlling airborne pathogens like tuberculosis and COVID-19, ensuring a safer environment for all patients and staff.
Revolutionizing Hospital Cleanliness: How Color Additives Transform Infection Prevention
December 9th 2024Discover how a groundbreaking color additive for disinfectant wipes improved hospital cleanliness by 69.2%, reduced microbial presence by nearly half, and enhanced cleaning efficiency—all without disrupting workflows.