A new paper by a team of researchers led by Shahriar Mobashery, the Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell wall.
The cell wall is a critically important entity for bacteria and essential for their survival. It is a rigid entity encasing the bacterium, and antibiotics are designed to interfere with disease processes by affecting its maturation. The function of antibiotics is to impair the cell wall, leading to bacterial death.
Scientists have determined that during bacterial growth a substantial amount of the parental cell wall is recycled. Although the recycling process has been known, its intricacies have not been well understood to date.
Mobashery's team synthesized pieces of the cell wall of the bacterium Escherichia coli in his laboratory and was able to use the synthetic wall components to observe the chemical reactions that take place during the recycling process.
The researchers found that a member of the lytic transglycosylases family of enzymes known as M1tB performed the requisite cell wall fragmentation on the synthetic sample of the cell wall from their laboratory. They also were able to measure the rate of the transformation by M1tB, determining that 14,000 pieces of the cell wall are processed by each molecule of M1tB in one bacterial generation.
The product of the M1tB reaction on the cell wall is the entity that initiates the recycling event, but when it diffuses out of the bacterium, it causes the onset of the pro-inflammatory events associated with bacterial infections.
The Notre Dame researchers who coauthored the paper were Maxim Suvorov, Mijoon Lee, Dusan Hesek, and Bill Boggess. Their research was funded by the National Institutes of Health.
The cell wall recycling study appears in the September issue of the Journal of the American Chemical Society.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.