New Steps Toward a Universal Flu Vaccine

Article

Researchers at Mt. Sinai School of Medicine have developed a novel influenza vaccine that could represent the next step towards a universal influenza vaccine eliminating the need for seasonal immunizations. They report their findings today in the inaugural issue of mBio™, the first online, open-access journal published by the American Society for Microbiology.

"Current influenza vaccines are effective against only a narrow range of influenza virus strains. It is for this reason that new vaccines must be generated and administered each year. We now report progress toward the goal of an influenza virus vaccine which would protect against multiple strains," says Peter Palese, an author on the study.

The main reason the current seasonal vaccine is so strain-specific is that the antibodies it induces are targeted at the globular head of the hemaglutinin (HA) molecule on the surface of the influenza virus. This globular head is highly variable and constantly changing from strain to strain.

In this study the researchers constructed a vaccine using HA without its globular head. Mice immunized with the headless HA vaccine showed a broader, more robust immune response than mice immunized with full-length HA, and that immune response was enough to protect them against a lethal viral challenge.

"Our results suggest that the response induced by headless HA vaccines is sufficiently potent to warrant their further development toward a universal influenza virus vaccine. Through further development and testing, we predict that a single immunization with a headless HA vaccine will offer effective protection through several influenza epidemics," says Palese.

In a related article, also appearing in the inaugural issue of mBio™, Antonio Cassone of the Instituto Superiore di Sanità, Rome, Italy, and Rino Rappuoli of Novartis Vaccines and Diagnostics, Siena, Italy, comment on the research and movement in the future towards universal vaccines.

"Recent research demonstrating the possibility of protecting against all influenza A virus types or even phylogenetically distant pathogens with vaccines based on highly conserved peptide or saccharide sequences is changing our paradigm," they write. "Is influenza the only disease that warrants approaches for universal vaccines? Clearly it is not."

They go on to note that a universal pneumococcal vaccine is already being discussed, as well as one for HIV. Universal vaccine strategies could also be used to protect against antibiotic-resistant bacteria and fungi for which no vaccine is currently available.

"There is now hope, sustained by knowledge and technology, for the generation of broadly protective universal vaccines restricted to species or groups of closely related pathogens," they write.

 

Related Videos
An eye instrument holding an intraocular lens for cataract surgery. How to clean and sterilize it appropriately?   (Adobe Stock 417326809By Mohammed)
Christopher Reid, PhD  (Photo courtesy of Christopher Reid, PhD)
Paper with words antimicrobial resistance (AMR) and glasses.   (Adobe Stock 126570978 by Vitalii Vodolazskyi)
3D illustration: Candida auris   (Adobe Stock 635576411 By Niamh )
 MIS-C (Adobe Stock 350657530 by Bernard Chantal)
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Medical investigators going over data. (AdobeStock 589197902 by Wasan)
CDC logo is seen on a laptop. (Adobe Stock 428450603 by monticellllo)
Association for the Health Care Environment (Logo used with permission)
Related Content