With salmonella-tainted ground turkey sickening more than 100 people and listeria-contaminated cantaloupes killing 15 this year, the ability to detect outbreaks of foodborne illness and determine their sources has become a top public health priority.
A new approach, reported online Oct. 14 in the journal Applied and Environmental Microbiology by a collaborative team led by Cornell University scientists, will enable government agencies and food companies to pinpoint the exact nature and origin of foodborne bacteria with unprecedented accuracy, says food science professor Martin Wiedmann.
The standard method of tracing foodborne illness involves breaking up the DNA of bacteria samples into smaller pieces and analyzing their banding patterns.
But scientists often find that different strains of bacteria have common DNA fingerprints that are too genetically similar to be able to differentiate between them, making it difficult to establish whether the salmonella that made one person sick was the same salmonella that infected another person. This was the case in a salmonella outbreak linked to salami made with contaminated black and red pepper that included 272 cases in 44 states between July 2009 and April 2010.
To surmount this challenge, Wiedmann adopted a genomic approach. By sequencing the genome of 47 samples of the bacteria -- 20 that had been collected from human sources during the outbreak, and 27 control samples collected from human, food, animal and environmental sources before the outbreak -- Wiedmann and his team were able to rapidly discriminate between outbreak-related cases and non-outbreak related cases, isolating four samples believed to be connected to the pepper contamination.
In the process of doing so, he also found other links: A Salmonella strain that led to a nationwide recall of pistachio nuts in 2009 turned up in samples from four people -- only one of whom had reported eating pistachios.
Other connected cases suggested smaller outbreaks of which officials had been previously unaware.
"The use of genome sequencing methods to investigate outbreaks of foodborne bacterial diseases is relatively new, and holds great promise as it can help to identify the temporal, geographical and evolutionary origin of an outbreak," Wiedmann says. "In particular, full genome sequence data may help to identify small outbreaks that may not be easily detected with lower resolution subtyping approaches."
Wiedmann, research associate Henk den Bakker and other lab members developed the single nucleotide polymorphism (SNP) test that is specific to the 2009 pepper-associated outbreak with the help of researchers at Life Technologies Corp. They also collaborated with researchers at Washington State University and departments of health in New York City and New York state.
A similar approach has previously been used in hospital settings to trace pathogenic bacteria such as methicillin-resistant Staphylococcus aureus, but this is its first application for food-borne illness. Wiedmann said he is continuing to perfect the method and use it to test other types of bacteria. The Food and Drug Administration and other agencies are also starting to use similar approaches.
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.