A pioneering therapy that attacks the Achilles heel of a common and deadly bug may be a promising treatment for multidrug-resistant infections, suggests preliminary research.
The new therapy, a monoclonal antibody, appears to be very effective in treating a strain of Pseudomonas aeruginosa resistant to 19 of 21 drugs available to treat it, according to a study being presented at the 49th annual meeting of the Infectious Diseases Society of America (IDSA). Pneumonia caused by Pseudomonas aeruginosa is a serious problem in hospitals.
Monoclonal antibody therapy, which uses laboratory-created proteins to attack a specific part of a targeted cell, is a growing and prominent treatment for cancer and inflammatory disorders. Monoclonal antibodies imitate antibodies that the bodys immune system naturally produces to fight illness, which is why researchers believe it is so effective.
While traditional antibiotics typically target the ability of bacteria to replicate, the monoclonal antibody being tested in the study disables the bacteriums tail (called the flagellum), an appendage that propels it throughout the body, helping it to spread, adhere and ultimately infect cells.
The flagellum is an important weapon for bacteria, but weve found it is vulnerable to this monoclonal antibody, which disables it, interfering with the bacteriums ability to move. That gives the immune system a head start in trying to combat the infection, says Lewis Neville, PhD, founder and CEO of Lostam BioPharmaceuticals, part of the New Generation Technology (NGT) incubator in Nazareth, Israel. Also, research shows that bacteria are unlikely to mutate by shedding the all-important tail, meaning they are less likely to develop resistance to this type of therapy.
In the study, researchers infected mice with a multidrug-resistant strain of Pseudomonas aeruginosa pneumonia and one hour later injected 20 mice each with the mouse version of the monoclonal antibody, the human version of the monoclonal antibody and imipenem, the antibiotic commonly used to treat these types of infections. After seven days, 75 percent of mice that received mouse monoclonal antibody, 60 percent that received human monoclonal antibody, and 30 percent that received imipenem had survived. Researchers gave a second dose of the human monoclonal antibody 24 hours later to another group of 20 mice, and 75 percent were alive after seven days, suggesting two doses provides more benefit, says Neville.
Testing in humans is a few years away, but if successful, the monoclonal antibody therapy could be a very promising treatment for Pseudomonas aeruginosa pneumonia. The infection is a scourge in hospitals, particularly in ventilated patients and those with cystic fibrosis, half of whom are permanently colonized with Pseudomonas aeruginosa, and many of whom die of the infection.
The next step is to test the ability of the monoclonal antibody to treat other infections caused by Pseudomonas aeruginosa, such as urinary tract infections and blood stream infections, according to Neville.
We desperately need new methods to treat these difficult highly resistant infections and a drug that successfully takes a different approach is welcome news, says Thomas G. Slama, MD, IDSA president-elect and clinical professor of medicine at Indiana University School of Medicine, Indianapolis. If they prove effective, new therapies such as these could be used alone or in combination with other antibiotics to provide more options for treatment.
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.