For years, pathogens' resistance to antibiotics has put them one step ahead of researchers, which is causing a public health crisis, according to Northeastern University professor Kim Lewis. But in new research, Lewis and his colleagues present a newly discovered antibiotic that eliminates pathogens without encountering any detectable resistance--a finding that challenges long-held scientific beliefs and holds great promise for treating chronic infections like tuberculosis and those caused by MRSA. The research was published Wednesday in the journal Nature.
Northeastern researchers' pioneering work to develop a novel method for growing uncultured bacteria led to the discovery of the antibiotic, called teixobactin, and Lewis' lab played a key role in analyzing and testing the compound for resistance from pathogens. Lewis, who is the paper's lead author, says this marks the first discovery of an antibiotic to which resistance by mutations of pathogens have not been identified.
Lewis and Northeastern biology professor Slava Epstein co-authored the paper with colleagues from the University of Bonn in Germany, NovoBiotic Pharmaceuticals in Cambridge, Massachusetts, and Selcia Limited in the United Kingdom.
The research team says teixobactin's discovery presents a promising new opportunity to treat chronic infections caused by staphylococcus aureus, or MSRA, that are highly resistant to antibiotics, as well as tuberculosis, which involves a combination of therapies with negative side effects.
The screening of soil microorganisms has produced most antibiotics, but only 1 percent of them will grow in the lab, and this limited resource was overmined in the 1960s, Lewis explained. He and Epstein spent years seeking to address this problem by tapping into a new source of antibiotics beyond those created by synthetic means: uncultured bacteria, which make up 99 percent of all species in external environments. They developed a novel method for growing uncultured bacteria in their natural environment, which led to the founding of NovoBiotic. Their approach involves the iChip, a miniature device Epstein's team created that can isolate and help grow single cells in their natural environment and thereby provides researchers with much improved access to uncultured bacteria. NovoBiotic has since assembled about 50,000 strains of uncultured bacteria and discovered 25 new antibiotics, of which teixobactin is the latest and most interesting, Lewis says.
The antibiotic was discovered during a routine screening for antimicrobial material using this method. Lewis then tested the compound for resistance development and did not find mutant MSRA or Mycobacterium tuberculosis resistant to teixobactin, which was found to block several different targets in the cell wall synthesis pathway.
"Our impression is that nature produced a compound that evolved to be free of resistance," Lewis says. "This challenges the dogma that we've operated under that bacteria will always develop resistance. Well, maybe not in this case."
Gerard Wright, a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University and who was not involved in this research, examined the team's work in a separate article for Nature published in concert with the new research paper. In his article, Wright noted that while it remains to be seen whether other mechanisms for resistance against teixobactin exist in the environment, the team's work could lead to identifying "other 'resistance-light' antibiotics."
"(The researchers') work offers hope that innovation and creativity can combine to solve the antibiotics crisis," Wright wrote.
Going forward, the research team hopes to develop teixobactin into a drug.
In 2013, Lewis revealed groundbreaking research in a separate paper published by Nature that presented a novel approach to treat and eliminate MRSA--the so-called "superbug" that infects 1 million Americans annually. Lewis and his team discovered a way to destroy the dormant persister cells, which are key to the success of chronic infections caused by MRSA.
Lewis says this latest research lays new ground to advance his innovative work on treating MRSA and other chronic infections.
Source: Northeastern University
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.