The deadliest malaria parasite needs two proteins to infect red blood cells. Courtesy of NIH
The deadliest malaria parasite needs two proteins to infect red blood cells and exit the cells after it multiplies, a finding that may provide researchers with potential new targets for drug development, according to researchers funded by the National Institutes of Health. Their study appears in the latest issue of Science.
Plasmodium falciparum, the species of parasite that causes the most malaria deaths worldwide, has developed drug-resistance in five countries in Southeast Asia.
In the current study, researchers sought to uncover the role of plasmepsins IX and X, two of the 10 types of plasmepsin proteins produced by P. falciparum for metabolic and other processes. They created malaria parasites that lacked plasmepsin IX or X under experimental conditions and compared them to those that had the two proteins.
The team found plasmepsin IX in rhoptries, specialized cell structures inside the parasite, which help it invade red blood cells. Parasites lacking plasmepsin IX had defective rhoptries. In addition, the team observed plasmepsin X in exonemes - small vesicles (balloon-like structures) that help malaria parasites exit infected cells. The team also discovered that plasmepsin X processes an important protein called SUB1. When deprived of plasmepsin X, the parasites couldn’t process SUB1 and couldn’t infect red blood cells or exit these cells after multiplying.
The researchers also identified three experimental malaria drugs that may work by targeting plasmepsin X. One drug, called CWHM-117, has already been tested in a mouse model of malaria. The new findings may help researchers modify CWHM-117 to make it more effective. Furthermore, parasites lacking the plasmepsins could potentially be used to screen candidate drugs to identify additional anti-malaria compounds.
The study was conducted in part by researchers from NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the Washington University School of Medicine in Saint Louis. Funding also was provided by the National Institute of Allergy and Infectious Diseases, the National Heart, Lung, and Blood Institute, and the National Institute of General Medical Sciences.
Reference: Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, Fremont DH, Tolia N, Beck JR, Meyers MJ, Niles JC, Zimmerberg J, and Goldberg DE. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science DOI: 10.1126/science.aan1478 (2017)
Source: National Institutes of Health (NIH)
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.