Consumers are one step closer to benefiting from packaging that could give simple text warnings when food is contaminated with deadly pathogens like E. coli and Salmonella, and patients could soon receive real-time diagnoses of infections such as C. difficile right in their doctors’ offices, saving critical time and trips to the lab. Researchers at McMaster University have developed a new way to print paper biosensors, simplifying the diagnosis of many bacterial and respiratory infections.
John Brennan, director of McMaster University's Biointerfaces Institute, examines a printout of a biosensor. Photo courtesy of McMaster University.
Consumers are one step closer to benefiting from packaging that could give simple text warnings when food is contaminated with deadly pathogens like E. coli and Salmonella, and patients could soon receive real-time diagnoses of infections such as C. difficile right in their doctors’ offices, saving critical time and trips to the lab. Researchers at McMaster University have developed a new way to print paper biosensors, simplifying the diagnosis of many bacterial and respiratory infections.
The new platform is the latest in a progression of paper-based screening technologies, which now enable users to generate a clear, simple answer in the form of letters and symbols that appear on the test paper to indicate the presence of infection or contamination in people, food or the environment.
“The simplicity of use makes the system easy and cheap to implement in the field or in the doctor’s office,” says John Brennan, director of McMaster’s Biointerfaces Institute, where the work was done with biochemist Yingfu Li and graduate student Carmen Carrasquilla.
“Imagine being able to clearly identify contaminated meat, vegetables or fruit. For patients suspected of having infectious diseases like C. diff, this technology allows doctors to quickly and simply diagnose their illnesses, saving time and expediting what could be life-saving treatments. This method can be extended to virtually any compound, be it a small molecule, bacterial cell or virus,” he says.
The research, in its formative stage, addresses a key problem facing current paper-based biosensing techniques which are labour-intensive, sometimes costly and inconvenient, and often difficult to mass produce.
Using state-of-the-art methods to produce “bio-inks,” researchers can now use conventional office ink-jet printers to print man-made DNA molecules with very high molecular weight on paper, much like printing a letter in an office. The sheer size of the DNA-which produces a signal when a specific disease biomarker is present-is enough to ensure it remains immobilized and therefore stable. The paper sensor emerges from the printer ready to use, like pH paper.
The implications are significant, says Brennan, since the new technology could be used in many fields where quick answers to important questions are critical.
“We could conceivably adapt this for numerous applications which would include rapid detection of cancer or monitoring toxins in the water supply,” says Brennan. “There are hundreds of possibilities.”
A complete copy of the study, published online in the European journal Chemistry, can be found HERE.
Source: McMaster University
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.