McMaster University scientists have found that an anticonvulsant drug may help in developing a new class of antibiotics. Although dozens of antibiotics target what bacteria do, their study has looked at how a certain part of bacteria are created, and they found there is a way of stopping it.
The discovery is important as there is growing concern worldwide about how antibiotic resistance is making the cures for infections ineffective. The World Health Organization has declared that antibiotic resistance is a major threat to global health security.
The McMaster study found that an anticonvulsant drug called lamotrigine is the first chemical inhibitor of the assembly of ribosomes in bacteria. Ribosomes are the molecular machines in cells that create all proteins. Many antibiotics attack what ribosomes do. However, the McMaster team found that lamotrigine stopped ribosomes from being created in the first place.
The paper has been published by the open-access journal eLife.
"Ribosome-inhibiting antibiotics have been routinely used for more than 50 years to treat bacterial infections, but inhibitors of bacterial ribosome assembly have waited to be discovered," saya Eric Brown, principal investigator of the study and a professor of biochemistry and biomedical sciences at McMaster's Michael G. DeGroote Institute for Infectious Disease Research. "Such molecules would be an entirely new class of antibiotics, which would get around antibiotic resistance of many bacteria. We found lamotrigine works."
Jonathan Stokes, a PhD student who worked on the paper, added that the team was able to identify the precise target for the lamotrigine within the bacteria, allowing the researchers to be clear in their understanding of ribosome assembly and the therapeutic applications of these types of chemicals.
The team used high throughput screening technologies of the Centre for Microbial Chemical Biology at McMaster to make the discovery. The study was funded by the Canadian Institutes of Health Research, the Michael G. DeGroote Institute for Infectious Disease Research, and the Natural Sciences and Engineering Research Council.
Source: McMaster University
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.