Scientists have isolated peptides (strings of amino acids) with antibiotic effects on bacteria that spoil food and cause food poisoning, after turning to the plant kingdom for help in boosting our arsenal in the ongoing war against antibiotic resistance. The scientists found two small peptides from widely cultivated crop species (one from broad beans and one from cowpea) that were especially effective.
Further work then confirmed that when these peptides were used together, and with a human peptide that is also an antimicrobial, their protective effects were beefed-up in a one-two antimicrobial punch.
Associate professor and head of microbiology at Trinity College Dublin, Ursula Bond, led the team that has just published its research in the journal Applied and Environmental Microbiology. She says, "There are two major advantages to these small peptides in that no resistance mechanisms have emerged yet, and in that they can be inexpensively synthesized in the lab. Initially, our aim was to identify peptides that provide protection against food-spoiling bacteria, but these peptides may also be useful as antibiotics against bacteria that cause serious human diseases."
The research team behind the discovery had previously isolated a human peptide that is a potent antimicrobial agent against many of the bacteria that spoil beer during industrial fermentation. Instead of screening for other human peptides with similar desired effects, the scientists scanned plant peptides databases and focused on the peptides whose structural blueprints were similar to the human one with the desired characteristics.
Many of the most effective antibiotics are derived from proteins produced by plants, but there is a growing need to discover new therapeutic candidates as resistance is increasing in bacterial species that have major health and economic implications for society.
Bond added, "We reasoned that natural peptides found in many plants and plant seeds might be useful new antibiotics, because plants have evolved these systems to protect themselves against the billions of bacteria and fungi they interact with in the soil every day."
This work was funded by a grant from the Department of Agriculture, Food and the Marine.
Source: Trinity College Dublin
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.
Global Patients, Local Risks: Why Medical Tourism Demands Infection Preventionists’ Attention
June 16th 2025At APIC25, infection prevention leader Heather Stoltzfus, MPH, RN, CIC, will spotlight the growing risks and overlooked responsibilities associated with medical tourism. Her session urges infection preventionists to engage with a global health trend that directly impacts US care settings.