As health departments around the U.S. boost efforts to combat Zika, scientists are working on new ways to kill the mosquitoes that carry the virus. One approach involves understanding the molecular mechanisms that keep the bugs alive so we can then undermine them. Scientists report in the ACS journal Biochemistry that they have revealed new structural insights on a key protein from Aedes aegypti, the mosquito species most often linked to the spread of Zika.
In February, the World Health Organization called for action against the disease after Brazil experienced a spike in the number of babies born with microcephaly, a condition characterized by an abnormally small head. Since then, the virus has been reported in more than 40 countries. Studies have shown that compounds that inhibit a protein called sterol carrier protein 2 (SCP2), which is involved in the transport of cholesterol and fats in insects, can kill Aedes aegypti larva. Kiran K. Singarapu and colleagues from CSIR - Indian Institute of Chemical Technology wanted to take a closer look at the structure of one of the protein's variants to help inform the development of future insecticides.
Using solution nuclear magnetic resonance, a technique that yields molecular-level information about proteins, the researchers were able to describe the 3-D structure and dynamics of a SCP2 variant. The new insights could help scientists screen small-molecule libraries for insecticide candidates. In addition to curbing Zika, any resulting compound that stamps out Aedes aegypti could reduce cases of other illnesses - dengue fever, yellow fever and chikungunya - that the mosquito also carries.
The authors acknowledge funding from the Department of Science and Technology of India.
Source: American Chemical Society (ACS)
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.