As health departments around the U.S. boost efforts to combat Zika, scientists are working on new ways to kill the mosquitoes that carry the virus. One approach involves understanding the molecular mechanisms that keep the bugs alive so we can then undermine them. Scientists report in the ACS journal Biochemistry that they have revealed new structural insights on a key protein from Aedes aegypti, the mosquito species most often linked to the spread of Zika.
In February, the World Health Organization called for action against the disease after Brazil experienced a spike in the number of babies born with microcephaly, a condition characterized by an abnormally small head. Since then, the virus has been reported in more than 40 countries. Studies have shown that compounds that inhibit a protein called sterol carrier protein 2 (SCP2), which is involved in the transport of cholesterol and fats in insects, can kill Aedes aegypti larva. Kiran K. Singarapu and colleagues from CSIR - Indian Institute of Chemical Technology wanted to take a closer look at the structure of one of the protein's variants to help inform the development of future insecticides.
Using solution nuclear magnetic resonance, a technique that yields molecular-level information about proteins, the researchers were able to describe the 3-D structure and dynamics of a SCP2 variant. The new insights could help scientists screen small-molecule libraries for insecticide candidates. In addition to curbing Zika, any resulting compound that stamps out Aedes aegypti could reduce cases of other illnesses - dengue fever, yellow fever and chikungunya - that the mosquito also carries.
The authors acknowledge funding from the Department of Science and Technology of India.
Source: American Chemical Society (ACS)
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.