The Zika virus is widely known for causing microcephaly and other brain defects in the fetuses of pregnant, infected women. Currently, there are no approved antiviral therapies specifically designed to treat Zika, but researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York, Hunter College, and their collaborators at Texas Tech University Health Sciences Center are on to a discovery that may lead to a much needed treatment. Led by the ASRC's Nanoscience Initiative, the scientists have developed a new class of molecules that show potent anti-Zika activity and low toxicity towards animal cells. Described in a paper published in the Journal of Medicinal Chemistry, these compounds could someday become the basis for a Zika-specific therapeutic.
"Our molecules are more potent than almost anything currently being used against Zika," said ASRC and Hunter College chemistry professor Adam Braunschweig, whose lab is conducting the work. "They are very potent, have low cell toxicity, and have the potential to be used for Zika treatment and detection."
All viruses and eukaryotic cells, which include plant and animal cells, have carbohydrates attached to their surfaces. The carbohydrates act like ID tags, helping cells recognize each other via carbohydrate receptors. This same method helps viruses gain entry into cells. In the new study, the researchers found a way to block this interaction.
The researchers created synthetic carbohydrate receptors, testing their anti-Zika activity in Vero cells and HeLa cells. In both cases, the molecules proved highly potent. The receptors likely fight the infection in one of two ways, says Braunschweig. They either bind to the carbohydrates on the cells' surfaces, or they bind those of the virus. Either way, the virus would be blocked from communicating with and entering the cells.
Synthetic carbohydrate receptors are not often useful because they are not very discriminating in what they choose to bind. In this study, however, the researchers created highly effective receptors by mimicking the binding approach of naturally occurring receptors. In addition to the potential for treating Zika, the strategy of using synthetic receptors also has anti-cancer, anti-parasite, and antibacterial potential.
A next step in the researchers' search for an effective Zika treatment will be to create a second generation of molecules by using the chemical intuition gained in this study to modify the structures and make them even more effective. Eventually, the team would like to test the molecules' therapeutic potential in animal trials.
Source: Advanced Science Research Center at The Graduate Center of The City University of New York
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.