Researchers Discover Possible Substitute for Antibiotics


Infections continue to threaten human health. With remarkable genetic flexibility, pathogenic organisms outsmart available therapies. Fortunately, microbial versatility is matched by the host immune system, which evolves in dialogue with the microbes. Therapies that enhance the beneficial effects of the immune response represent a promising, but under-explored, therapeutic alternative to antibiotics. A recently published paper identifies a new therapeutic target for the treatment of bacterial infections that regulates the immune response. Researchers at Lund University in Sweden have now found an "off" switch for destructive inflammation in infected kidneys that does not impair the antibacterial defense.

The challenge is to strengthen the good, antibacterial defense without causing tissue damage. Inflammation accompanies most infections and symptoms like fever and pain are the price to pay for an effective defense.

''Here we address how to avoid the exaggerated immune response to severe infections, which can lead to tissue destruction and even organ failure'' says Manoj Puthia, researcher at Lund University, Sweden and lead author of the study.

''We knew that specific transcription factors regulate innate immune responses to bacterial infection and that the outcome of infection be beneficial or destructive, depending on how these regulators work'' says professor Catharina Svanborg. ''We have also identified genetic variants in susceptible patients that support this concept. ''

Using mice lacking the closely related transcription factors IRF-3 or IRF-7, we were surprised to find that IRF-3 and IRF-7 control different facets of the immune response to kidney infection and that this determines the susceptibility to acute pyelonephritis, which is a severe, potentially life-threatening bacterial infection of the urinary tract.

In contrast to mice lacking IRF-3, which became very ill, Irf7-/- mice were protected from infection and chronic inflammation, suggesting that suppression of Irf7 might be beneficial.

''Based on these findings identifying Irf7 as an immunotherapeutic target, we used siRNA therapy to silence Irf7 and were able to demonstrate protection in susceptible mice,'' says Puthia.

Infections remain the major cause of the deaths worldwide, especially in developing and poorly developed areas. While antibiotics have greatly reduced illness and mortality, many pathogens have developed resistance and we are facing a global crisis.

"We propose to fight infections by learning from the innate immune system. We also need to define why the immune system is not protecting certain patients and learn to replenish these defects by boosting the ''good'' immune response."

Source: Lund University

Related Videos
Medical investigators going over data. (AdobeStock 589197902 by Wasan)
CDC logo is seen on a laptop. (Adobe Stock 428450603 by monticellllo)
Association for the Health Care Environment (Logo used with permission)
Ambassador Deborah Birx, , speaks with Infection Control Today about masks in schools and the newest variant.
mRNA technology  (Adobe Stock 485886181 by kaptn)
Ambassador Deborah Birx, MD
Woman lying in hospital bed (Adobe Stock, unknown)
Photo of a model operating room. (Photo courtesy of Indigo-Clean and Kenall Manufacturing)
GIANTmicrobes at the 2023 APIC Annual Conference and Exhibition.  (Photo by the author)
Related Content