Research led by IowaStateUniversity scientists has them a step closer to finding a way to counter the Ebola virus. A team led by Gaya Amarasinghe, an assistant professor in biochemistry, biophysics and molecular biology, has recently solved the structure from a key part of the Ebola protein known as VP35. VP35 interferes with the natural resistance of host cells against viral infections.
"Usually when viruses infect cells, the host immune system can fight to eventually clear the virus. But with Ebola infections, the ability of the host to mount a defense against the invading virus is lost," said Amarasinghe. This is because the VP35 protein interferes with the host's innate immune pathways that form the first line of defense against pathogens, he said.
In their research directed toward understanding host-viral interactions, Amarasinghe and his research team used a combination of X-ray crystallography and nucleic magnetic resonance spectroscopy to solve the structure using non-infectious protein samples.
A report describing the findings is published this week in the journal Proceedings of the National Academy of Sciences of the United States of America.
Now that the structure from a key part of VP35 is available, this information can be used as a template for anti-viral drug discovery.
"The next step is to use this structure to identify and design drugs that potentially bind with VP35," he said.
If a drug that inhibits VP35 function can be discovered, then the Ebola virus could potentially be neutralized.
"Without functional VP35, the Ebola virus cannot replicate so it is noninfectious," said Amarasinghe.
The Ebola virus can cause hemorrhagic fever that is usually fatal. According to the Centers for Disease Control and Prevention (CDC), outbreaks have caused more than 1,000 deaths, mostly in Central Africa, since it was first recognized in 1976.
Amarasinghe co-authored this study with Daisy Leung, assistant scientist; Nathaniel Ginder, graduate student; Bruce Fulton, associate scientist; and Richard Honzatko, professor; all from Iowa State's biochemistry, biophysics and molecular biology department, together with Christopher Basler, associate professor from Mount Sinai School of Medicine in New York City and Jay Nix from the Berkeley National Laboratory in Berkeley, Calif.
Work in the Amarasinghe laboratory was funded in part by the Roy J. Carver Charitable Trust.
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.