An analysis of 2,000-year-old human remains from several regions across the Italian peninsula has confirmed the presence of malaria during the Roman Empire, addressing a longstanding debate about its pervasiveness in this ancient civilization. The answer is in mitochondrial genomic evidence of malaria, coaxed from the teeth of bodies buried in three Italian cemeteries, dating back to the Imperial period of the first to third centuries Common Era.
Skeletal remains of an individual from Velia, Italy. Courtesy of Luca Bandioli, Pigorini Museum
An analysis of 2,000-year-old human remains from several regions across the Italian peninsula has confirmed the presence of malaria during the Roman Empire, addressing a longstanding debate about its pervasiveness in this ancient civilization. The answer is in mitochondrial genomic evidence of malaria, coaxed from the teeth of bodies buried in three Italian cemeteries, dating back to the Imperial period of the first to third centuries Common Era.
The genomic data is important, say researchers, because it serves as a key reference point for when and where the parasite existed in humans, and provides more information about the evolution of human disease.
“Malaria was likely a significant historical pathogen that caused widespread death in ancient Rome,” says evolutionary geneticist Hendrik Poinar, director of McMaster’s Ancient DNA Centre where the work was conducted.
A serious and sometimes fatal infectious disease that is spread by infected mosquitoes, malaria and its parasite Plasmodium falciparum, is responsible for nearly 450,000 deaths every year, the majority of them children under the age of five.
“There is extensive written evidence describing fevers that sound like malaria in ancient Greece and Rome, but the specific malaria species responsible is unknown,” says Stephanie Marciniak, a former post doctoral student in the Ancient DNA Centre and now a postdoctoral scholar at Pennsylvania State University.
“Our data confirm that the species was likely Plasmodium falciparum, and that it affected people in different ecological and cultural environments. These results open up new questions to explore, particularly how widespread this parasite was, and what burden it placed upon communities in Imperial Roman Italy,” she says.
Marciniak sampled teeth taken from 58 adults and 10 children interred at three Imperial period Italian cemeteries: Isola Sacra, Velia and Vagnari. Located on the coast, Velia and Isola Sacra were known as important port cities and trading centers. Vagnari is located further inland and believed to be the burial site of laborers who would have worked on a Roman rural estate.
Using techniques developed at McMaster and abroad, researchers mined tiny DNA fragments from dental pulp taken from the teeth. They were able to extract, purify and enrich specifically for the Plasmodium species known to infect humans.
It was a difficult and painstaking process, complicated by the very nature of the disease.
Usable DNA is challenging to extract because the parasites primarily dwell within the bloodstream and organs, including the spleen and liver, which decompose and break down over time-in this instance, over the course of two millennia.
Marciniak, Poinar, and Tracy Prowse from McMaster, alongside Luca Bandioli from the Luigi Pigorini National Museum of Prehistory and Ethnography in Rome and Edward Holmes from the University of Sydney recovered more than half of the P. falciparum mitochondrial genome from two individuals from Velia and Vagnari.
P. falciparum remains the most prevalent malaria parasite in sub-Saharan Africa and the most-deadly anywhere, responsible for the largest number of malaria-related deaths globally.
The findings are published in Current Biology.
Source: McMaster University
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.