Dr. Antonio Di Stefano and his colleagues at the University G. d'Annunzio of Chieti, Italy, have reviewed the inhibiting potential of RNAIII Inhibiting Peptide (RIP) for the treatment of biofilm producing S. aureus infections.
Bacterial cells can grow in two ways, one as single cells or in the form of aggregates which normally form biofilms. Biofilms are mainly associated with the enhancement of virulence of the strains. This is because biofilms protect bacterial cells from antimicrobial agents as they are usually impermeable, while providing physical defense against the host's own immune response and allowing bacterial cells to produce pathogenic toxins in larger quantities. Bacteria in biofilms are therefore able to survive by producing cells that can survive high antibiotic concentrations. Therefore, the use of traditional antimicrobial agents solely is not considered an effective treatment for the infections caused by biofilm producing strains.
Hospital-acquired and post-surgical infections, specifically due to the use of indwelling medical devices like catheters, prosthesis etc. are often associated with bacterial growth under the influence of biofilm formation by Staph. aureus.
By studying biofilms, researchers can devise treatment strategies to treat difficult and potentially life threatening bacterial infections. One such strategy is to prevent the formation of biofilms. Bacteria are able to form biofilms through a cell-cell communication process known as quorum sensing (QS).
Quorum sensing was discovered to be mediated by RNA-III activating peptide (RAP) and its target protein, TRAP. Disrupting this interaction results in a decreased adhesion of bacterial cells to each other which further leads to a disruption in the biofilm formation cycle. Unable to form a biofilm, bacteria are therefore unable to produce as much toxins while being more vulnerable to the host's defenses.
RNA-III inhibiting peptides (RIPs) and their derivatives are considered as a potential tool for disrupting this quorum sensing mechanism in S. aureus.
Stephano, et al. explain the process of biofilm formation and the proposed method of disrupting the process with RIPs and their derivatives. In addition, they present an overview of RIP structure, mechanism of action, in vitro/in vivo studies to treat infections, and RIP structure-activity studies. This treatise on the medicinal chemistry of RIPs gives the reader an insight into a new strategy that has the potential to treat chronic and complicated S. aureus infections.
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.