Researchers Study Enhanced Chlorhexidine Skin Penetration with Eucalyptus Oil Component

Article

Chlorhexidine (CHG) penetrates poorly into skin. The purpose of this study by Casey, et al. (2017) was to compare the depth of CHG skin permeation from solutions containing either 2% (w/v) CHG and 70% (v/v) isopropyl alcohol (IPA) or 2% (w/v) CHG, 70% (v/v) IPA and 2% (v/v) 1,8-cineole.

An ex-vivo study using Franz diffusion cells was carried out. Full thickness human skin was mounted onto the cells and a CHG solution, with or without 2% (v/v) 1,8-cineole was applied to the skin surface. After twenty-four hours the skin was sectioned horizontally in 100 μm slices to a depth of 2000 μm and the concentration of CHG in each section quantified using high performance liquid chromatography (HPLC). The data were analyzed with repeated measures analysis of variance.

The concentration of CHG in the skin on average was significantly higher (33.3% [95%, CI 1.5% - 74.9%]) when a CHG solution which contained 1,8-cineole was applied to the skin compared to a CHG solution which did not contain this terpene (P = 0.042).

The researchers conclude that enhanced delivery of CHG can be achieved in the presence of 1,8-cineole, which is the major component of eucalyptus oil. This may reduce the numbers of microorganisms located in the deeper layers of the skin which potentially could decrease the risk of surgical site infection.

Source: Casey AL, et al. Enhanced chlorhexidine skin penetration with 1,8-cineole. BMC Infectious Diseases. 2017;17:350

Newsletter

Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.

Recent Videos
COVID-19 infection (Adobe Stock327378972 by rost9)
Swarm of Mosquitoes on Green Background Disease Carriers Insect Infestation  (Adobe Stock 1609688034 by Amith)
Structural detail of Hepatitis B virus on blue-green background. 3D illustration (Adobe Stock 239268660 by Destina)
© 2025 MJH Life Sciences

All rights reserved.