Resistance to Key Malaria Drug Spreading at Alarming Rate in Southeast Asia

Article

Resistance to artemisinin, the main drug to treat malaria, is now widespread throughout Southeast Asia, among the Plasmodium falciparum (P. falciparum) parasites that cause the disease and is likely caused by a genetic mutation in the parasites. However, a six-day course of artemisinin-based combination therapy-as opposed to a standard three-day course-has proved highly effective in treating drug-resistant malaria cases, according to findings published today in the New England Journal of Medicine. The research was conducted by an international team of scientists including those from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Previous clinical and laboratory studies suggest that P. falciparum parasites with a mutant version of a gene called K13-propeller are resistant to artemisinin. In the new study, researchers found that the geographic distribution of these mutant parasites in Western Cambodia corresponded with the recent spread of drug resistance among malaria patients in that region. Although artemisinin continued to effectively clear malaria infections among patients in this region, the parasites with the genetic mutation were eliminated more slowly, according to the authors. Slow-clearing infections strongly associated with this genetic mutation were found in additional areas, validating this marker of resistance outside of Cambodia. Artemisinin resistance is now firmly established in areas of Cambodia, Myanmar, Thailand and Vietnam, according to the authors.

As a potential treatment, the researchers tested a six-day course of artemisinin-based combination therapy in Western Cambodia and found the regimen to be effective in this region, where resistance has become the most problematic. To contain the further spread of artemisinin resistance, continued geographical monitoring is needed as well as a re-examination of standard malaria treatment regimens and the development of new therapy options, the authors write.

Reference: Ashley EA, et al. The spread of artemisinin resistance in falciparum malaria. New England Journal of Medicine DOI: 10.1056/NEJMoa1314981.

Source: National Institutes of Health (NIH)

Related Videos
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Vaccine conspiracy theory vector illustration word cloud  (Adobe Stock 460719898 by Colored Lights)
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Infection Control Today Topic of the Month: Mental Health
Infection Control Today's topic of the month: Mental Health
Related Content