Scientists Decipher a Mechanism in Serious Skin Infections

Article

Staphylococcus aureus is one of the most feared, multi-resistant pathogens. The bacterium often causes life-threatening infections, particularly in people with a weakened immune system. During the last few years, especially aggressive strains of S. aureus have appeared around the globe, known as community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), and they can even trigger serious infections in the skin and tissue of healthy people. Scientists from the Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT) and the German Center for Infection Research (DZIF) have been able to decipher an important mechanism in the occurrence of this infection. The results were published in the Nature Microbiology journal on Monday.

The group of scientists has been able to demonstrate that CA-MRSA strains can change their outer cell envelope by inserting increasing amounts of a long-chain sugar polymer, the cell wall teichoic acid. "It's well-known that CA-MRSA strongly increases the secretion of toxins, which plays a major role in the serious progression of skin infections," said Dr. Christopher Weidenmaier, the head of the research group. "We've now also been able to prove that the increased insertion of the sugar polymer into the cell envelope creates a change in the immune reaction in the case of skin infections. This," he added, "increased the ability of these aggressive bacteria to cause particularly serious skin infections in animal experiments. However, additional research is required to determine if the results also hold true in humans.

The authors were in a position to decipher the molecular mechanisms more precisely, which underlie the modification in the cell envelope. This will open up the possibility of deliberately preventing the modification process in serious skin infections caused by CA-MRSA strains in the future. "This kind of therapeutic approach would give the human immune system the chance to combat the infection more efficiently itself," Weidenmaier said. These so-called anti-virulence strategies have been increasingly explored in recent times; in this case, the pathogen itself is not attacked, but its pathogenic effect. "In contrast to classic antibiotic treatment, an anti-virulence strategy should lead to lower resistance rates," the scientist explained. "Because the bacterial cell is not killed off or inhibited in its growth, it is subject to less evolutionary pressure."

Reference: Wanner S, et al. Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nature Microbiology, 23 January 2017. doi:10.1038/nmicrobiol.2016.257

Source: German Center for Infection Research

Related Videos
Baby visiting a pediatric facility  (Adobe Stock 448959249 by Rawpixel.com)
Antimicrobial Resistance (Adobe Stock unknown)
Anne Meneghetti, MD, speaking with Infection Control Today
Patient Safety: Infection Control Today's Trending Topic for March
Infection Control Today® (ICT®) talks with John Kimsey, vice president of processing optimization and customer success for Steris.
Picture at AORN’s International Surgical Conference & Expo 2024
Infection Control Today and Contagion are collaborating for Rare Disease Month.
Rare Disease Month: An Infection Control Today® and Contagion® collaboration.
Vaccine conspiracy theory vector illustration word cloud  (Adobe Stock 460719898 by Colored Lights)
Related Content