Scientists have developed a new way to target viruses which could increase the effectiveness of antiviral drugs.
Scientists have developed a new way to target viruses which could increase the effectiveness of antiviral drugs. Instead of attacking the virus itself, the method developed at the University of Edinburgh alters the conditions which viruses need to survive and multiply.
By making the site of infection less hospitable for the virus, the virus becomes less able to mutate and build up resistance to drugs. The researchers were also able to target more than one virus at the same time.
Viruses take up residence in host cells within our body, which produce proteins that enable the virus to multiply and survive.
The study, published in the journal Proceedings of the National Academy of Sciences (PNAS), analysed molecules known as microRNAs, which regulate how much of these proteins are made.
The scientists were able to manipulate the microRNA levels, which enabled them to control a network of proteins and stop viruses from growing.
Most existing antiviral therapies only work against one virus. However, by adapting the virus host environment the researchers were able to target different types of viruses.
It is hoped that the research could lead to new treatments for patients suffering from a range of infections.
Dr. Amy Buck, of the University's Centre for Immunity, Infection & Evolution, said: "A problem with current antiviral therapies, which generally target the virus, is that viruses can mutate to become resistant. Since new viral strains emerge frequently, and many infections are difficult to diagnose and treat, it is important to find new ways of targeting infection. Our hope is that we will be able to use host-directed therapies to supplement the natural immune response and disable viruses by taking away what they need to survive."
Scientists studied the herpes family of viruses, which can also cause cancer with the Epstein-Barr virus, and the Semliki Forest virus, which is mainly spread by mosquitoes. Both viruses have different characteristics. Viruses from the herpes family replicate inside the nuclei of cells, while the Semliki Forest multiplies outside the nucleus of a cell.
Further research has begun to look at how this method could be used to target influenza.
The study was funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.