Scientists have identified a link between different strains of malaria parasites that cause severe disease, which could help develop vaccines or drugs against life-threatening cases of the infection.
Researchers have identified a key protein that is common to many potentially fatal forms of the condition, and found that antibodies that targeted this protein were effective against these severe malaria strains.
The protein has sticky properties that enable it to bind to red blood cells and form dangerous clumps that can block blood vessels. These clumps, or rosettes, can cause severe illness, including coma and brain damage. Presently, between 10 and 20 per cent of people with severe malaria die from it, and the disease which is spread by blood-sucking mosquitoes claims about one million lives per year.
Malaria parasites, once in the bloodstream, are able to alter the protein molecules on their surfaces to evade attack by the immune system. These surface proteins are usually poor targets for treatments or vaccines because they are highly variable between different malaria parasite strains. Now, researchers have found that the surface proteins of rosette-forming parasites share similarities that may allow them to act as a target for treatments to block progress of the disease.
Scientists from the University of Edinburgh worked with collaborators from Cameroon, Mali, Kenya and The Gambia to test their antibodies against parasites collected from patients. The study, published in PLoS Pathogens, was supported by the Wellcome Trust.
Professor Alexandra Rowe of the University of Edinburgh's School of Biological Sciences, who led the study, says, "We knew that clusters, or rosettes, of blood cells were found in many cases of severe or life-threatening malaria, so we looked at rosette-forming parasites and found a common factor that we could target with antibodies. We hope this discovery will inform new treatments or vaccines to block the formation of rosettes and so prevent many life-threatening cases of malaria."
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.