Researchers have sequenced the genetic blueprint of one of the most prolific pathogen-transmitting agents on the planet -- the Lyme-disease-spreading tick (Ixodes scapularis) that bites humans. The findings could lead to advances in not only disrupting the tick's capacity to spread diseases but also in eradicating the pest.
The large tick genome -- smaller than but similar in complexity to the human genome -- supports redundancy, says R. Michael Roe, the William Neal Reynolds Distinguished Professor of Entomology at North Carolina State University and a co-author of a paper published in Nature Communications that describes the tick genome. Roe said that the size and complexity of the genome -- combined with its duplicative elements -- were problematic for tick researchers.
"Repetition makes assembly more challenging," Roe says.
Roe focused his work on the processes that help ticks find each other and mate; how ticks produce eggs and the hormones that regulate egg production; what makes ticks bite; and how ticks feed and process their blood meals.
"We identified the hormones used for development, the process of how ticks utilize the blood that they eat, and how they convert that blood into eggs," Roe says.
Besides repetitive elements, Roe noted important differences between the tick genome and insect genomes.
"We know from previous work that, at the genome level, ticks do not control their development like insects," Roe says. "For example, ticks don't have a juvenile hormone that insects have. That hormone is responsible for color, molt patterns, migration activity and many other functions in insects. That's important because some of the safer insecticides are based on upsetting the juvenile hormone balance."
Tick females have a hormone that regulates egg development. Learning how to block that hormone could lead to the development of a "birth-control pill" that would go a long way toward eradicating the pest, Roe says.
Roe says knowledge gleaned from the genome could be used to develop new ways to attract and trap ticks in order to disrupt their "love at first touch" mating practices. Studying the ways ticks are attracted to humans could be used to produce new tick repellents, including natural repellents; Roe and colleagues at NC State are currently developing such products.
The project was led by corresponding author Catherine Hill at Purdue University. Postdoctoral researchers Brooke W. Bissinger, Jiwei Zhu and Sayed Khalil are NC State co-authors on the paper. Funding from the National Science Foundation and the National Institutes of Health supported the work.
Source: North Carolina State University
CDC Urges Vigilance: New Recommendations for Monitoring and Testing H5N1 Exposures
July 11th 2025With avian influenza A(H5N1) infections surfacing in both animals and humans, the CDC has issued updated guidance calling for aggressive monitoring and targeted testing to contain the virus and protect public health.
IP LifeLine: Layoffs and the Evolving Job Market Landscape for Infection Preventionists
July 11th 2025Infection preventionists, once hailed as indispensable during the pandemic, now face a sobering reality: budget pressures, hiring freezes, and layoffs are reshaping the field, leaving many IPs worried about their future and questioning their value within health care organizations.
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.